Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsneicnv Structured version   Visualization version   GIF version

Theorem clsneicnv 38897
Description: If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the 𝐻 operator, then the converse of the operator is known. (Contributed by RP, 5-Jun-2021.)
Hypotheses
Ref Expression
clsnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
clsnei.p 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛𝑚 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
clsnei.d 𝐷 = (𝑃𝐵)
clsnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
clsnei.h 𝐻 = (𝐹𝐷)
clsnei.r (𝜑𝐾𝐻𝑁)
Assertion
Ref Expression
clsneicnv (𝜑𝐻 = (𝐷 ∘ (𝐵𝑂𝒫 𝐵)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝐵,𝑛,𝑜,𝑝   𝜑,𝑖,𝑗,𝑘,𝑙   𝜑,𝑛,𝑜,𝑝
Allowed substitution hints:   𝜑(𝑚)   𝐷(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑃(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐻(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐾(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)

Proof of Theorem clsneicnv
StepHypRef Expression
1 clsnei.h . . . 4 𝐻 = (𝐹𝐷)
21cnveqi 5444 . . 3 𝐻 = (𝐹𝐷)
3 cnvco 5455 . . 3 (𝐹𝐷) = (𝐷𝐹)
42, 3eqtri 2774 . 2 𝐻 = (𝐷𝐹)
5 clsnei.d . . . 4 𝐷 = (𝑃𝐵)
6 clsnei.r . . . 4 (𝜑𝐾𝐻𝑁)
75, 1, 6clsneibex 38894 . . 3 (𝜑𝐵 ∈ V)
8 clsnei.p . . . . 5 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛𝑚 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
9 simpr 479 . . . . 5 ((𝜑𝐵 ∈ V) → 𝐵 ∈ V)
108, 5, 9dssmapnvod 38808 . . . 4 ((𝜑𝐵 ∈ V) → 𝐷 = 𝐷)
11 clsnei.o . . . . 5 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
12 pwexg 4991 . . . . . 6 (𝐵 ∈ V → 𝒫 𝐵 ∈ V)
1312adantl 473 . . . . 5 ((𝜑𝐵 ∈ V) → 𝒫 𝐵 ∈ V)
14 clsnei.f . . . . 5 𝐹 = (𝒫 𝐵𝑂𝐵)
15 eqid 2752 . . . . 5 (𝐵𝑂𝒫 𝐵) = (𝐵𝑂𝒫 𝐵)
1611, 13, 9, 14, 15fsovcnvd 38802 . . . 4 ((𝜑𝐵 ∈ V) → 𝐹 = (𝐵𝑂𝒫 𝐵))
1710, 16coeq12d 5434 . . 3 ((𝜑𝐵 ∈ V) → (𝐷𝐹) = (𝐷 ∘ (𝐵𝑂𝒫 𝐵)))
187, 17mpdan 705 . 2 (𝜑 → (𝐷𝐹) = (𝐷 ∘ (𝐵𝑂𝒫 𝐵)))
194, 18syl5eq 2798 1 (𝜑𝐻 = (𝐷 ∘ (𝐵𝑂𝒫 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1624  wcel 2131  {crab 3046  Vcvv 3332  cdif 3704  𝒫 cpw 4294   class class class wbr 4796  cmpt 4873  ccnv 5257  ccom 5262  cfv 6041  (class class class)co 6805  cmpt2 6807  𝑚 cmap 8015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-id 5166  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-1st 7325  df-2nd 7326  df-map 8017
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator