Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsneircomplex Structured version   Visualization version   GIF version

Theorem clsneircomplex 40459
Description: The relative complement of the class 𝑆 exists as a subset of the base set. (Contributed by RP, 26-Jun-2021.)
Hypotheses
Ref Expression
clsneibex.d 𝐷 = (𝑃𝐵)
clsneibex.h 𝐻 = (𝐹𝐷)
clsneibex.r (𝜑𝐾𝐻𝑁)
Assertion
Ref Expression
clsneircomplex (𝜑 → (𝐵𝑆) ∈ 𝒫 𝐵)

Proof of Theorem clsneircomplex
StepHypRef Expression
1 clsneibex.d . . 3 𝐷 = (𝑃𝐵)
2 clsneibex.h . . 3 𝐻 = (𝐹𝐷)
3 clsneibex.r . . 3 (𝜑𝐾𝐻𝑁)
41, 2, 3clsneibex 40458 . 2 (𝜑𝐵 ∈ V)
5 difssd 4112 . 2 (𝜑 → (𝐵𝑆) ⊆ 𝐵)
64, 5sselpwd 5233 1 (𝜑 → (𝐵𝑆) ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2113  Vcvv 3497  cdif 3936  𝒫 cpw 4542   class class class wbr 5069  ccom 5562  cfv 6358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-iota 6317  df-fv 6366
This theorem is referenced by:  clsneiel2  40465
  Copyright terms: Public domain W3C validator