MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsocv Structured version   Visualization version   GIF version

Theorem clsocv 22771
Description: The orthogonal complement of the closure of a subset is the same as the orthogonal complement of the subset itself. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
clsocv.v 𝑉 = (Base‘𝑊)
clsocv.o 𝑂 = (ocv‘𝑊)
clsocv.j 𝐽 = (TopOpen‘𝑊)
Assertion
Ref Expression
clsocv ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → (𝑂‘((cls‘𝐽)‘𝑆)) = (𝑂𝑆))

Proof of Theorem clsocv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cphngp 22701 . . . . . . . 8 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)
2 ngptps 22153 . . . . . . . 8 (𝑊 ∈ NrmGrp → 𝑊 ∈ TopSp)
31, 2syl 17 . . . . . . 7 (𝑊 ∈ ℂPreHil → 𝑊 ∈ TopSp)
43adantr 479 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝑊 ∈ TopSp)
5 clsocv.v . . . . . . 7 𝑉 = (Base‘𝑊)
6 clsocv.j . . . . . . 7 𝐽 = (TopOpen‘𝑊)
75, 6istps 20489 . . . . . 6 (𝑊 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑉))
84, 7sylib 206 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝐽 ∈ (TopOn‘𝑉))
9 topontop 20479 . . . . 5 (𝐽 ∈ (TopOn‘𝑉) → 𝐽 ∈ Top)
108, 9syl 17 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝐽 ∈ Top)
11 simpr 475 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝑆𝑉)
12 toponuni 20480 . . . . . 6 (𝐽 ∈ (TopOn‘𝑉) → 𝑉 = 𝐽)
138, 12syl 17 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝑉 = 𝐽)
1411, 13sseqtrd 3599 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝑆 𝐽)
15 eqid 2605 . . . . 5 𝐽 = 𝐽
1615sscls 20608 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
1710, 14, 16syl2anc 690 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
18 clsocv.o . . . 4 𝑂 = (ocv‘𝑊)
1918ocv2ss 19774 . . 3 (𝑆 ⊆ ((cls‘𝐽)‘𝑆) → (𝑂‘((cls‘𝐽)‘𝑆)) ⊆ (𝑂𝑆))
2017, 19syl 17 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → (𝑂‘((cls‘𝐽)‘𝑆)) ⊆ (𝑂𝑆))
2115clsss3 20611 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
2210, 14, 21syl2anc 690 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
2322, 13sseqtr4d 3600 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → ((cls‘𝐽)‘𝑆) ⊆ 𝑉)
2423adantr 479 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ((cls‘𝐽)‘𝑆) ⊆ 𝑉)
255, 18ocvss 19771 . . . . . . 7 (𝑂𝑆) ⊆ 𝑉
2625a1i 11 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → (𝑂𝑆) ⊆ 𝑉)
2726sselda 3563 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 𝑥𝑉)
28 df-ss 3549 . . . . . . . . . . . 12 (((cls‘𝐽)‘𝑆) ⊆ 𝑉 ↔ (((cls‘𝐽)‘𝑆) ∩ 𝑉) = ((cls‘𝐽)‘𝑆))
2924, 28sylib 206 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (((cls‘𝐽)‘𝑆) ∩ 𝑉) = ((cls‘𝐽)‘𝑆))
3029ineq1d 3770 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ((((cls‘𝐽)‘𝑆) ∩ 𝑉) ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) = (((cls‘𝐽)‘𝑆) ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}))
31 dfrab3 3856 . . . . . . . . . . . 12 {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} = (𝑉 ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
3231ineq2i 3768 . . . . . . . . . . 11 (((cls‘𝐽)‘𝑆) ∩ {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) = (((cls‘𝐽)‘𝑆) ∩ (𝑉 ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}))
33 inass 3780 . . . . . . . . . . 11 ((((cls‘𝐽)‘𝑆) ∩ 𝑉) ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) = (((cls‘𝐽)‘𝑆) ∩ (𝑉 ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}))
3432, 33eqtr4i 2630 . . . . . . . . . 10 (((cls‘𝐽)‘𝑆) ∩ {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) = ((((cls‘𝐽)‘𝑆) ∩ 𝑉) ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
35 dfrab3 3856 . . . . . . . . . 10 {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} = (((cls‘𝐽)‘𝑆) ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
3630, 34, 353eqtr4g 2664 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (((cls‘𝐽)‘𝑆) ∩ {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) = {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
3715clscld 20599 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
3810, 14, 37syl2anc 690 . . . . . . . . . . 11 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
3938adantr 479 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
40 fvex 6094 . . . . . . . . . . . 12 (0g‘(Scalar‘𝑊)) ∈ V
41 eqid 2605 . . . . . . . . . . . . 13 (𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) = (𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦))
4241mptiniseg 5528 . . . . . . . . . . . 12 ((0g‘(Scalar‘𝑊)) ∈ V → ((𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) “ {(0g‘(Scalar‘𝑊))}) = {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
4340, 42ax-mp 5 . . . . . . . . . . 11 ((𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) “ {(0g‘(Scalar‘𝑊))}) = {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}
44 eqid 2605 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
45 eqid 2605 . . . . . . . . . . . . 13 (·𝑖𝑊) = (·𝑖𝑊)
46 simpll 785 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 𝑊 ∈ ℂPreHil)
478adantr 479 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 𝐽 ∈ (TopOn‘𝑉))
4847, 47, 27cnmptc 21213 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (𝑦𝑉𝑥) ∈ (𝐽 Cn 𝐽))
4947cnmptid 21212 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (𝑦𝑉𝑦) ∈ (𝐽 Cn 𝐽))
506, 44, 45, 46, 47, 48, 49cnmpt1ip 22768 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
5144cnfldhaus 22326 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) ∈ Haus
52 cphclm 22717 . . . . . . . . . . . . . . . 16 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
53 eqid 2605 . . . . . . . . . . . . . . . . 17 (Scalar‘𝑊) = (Scalar‘𝑊)
5453clm0 22607 . . . . . . . . . . . . . . . 16 (𝑊 ∈ ℂMod → 0 = (0g‘(Scalar‘𝑊)))
5552, 54syl 17 . . . . . . . . . . . . . . 15 (𝑊 ∈ ℂPreHil → 0 = (0g‘(Scalar‘𝑊)))
5655ad2antrr 757 . . . . . . . . . . . . . 14 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 0 = (0g‘(Scalar‘𝑊)))
57 0cn 9884 . . . . . . . . . . . . . 14 0 ∈ ℂ
5856, 57syl6eqelr 2692 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (0g‘(Scalar‘𝑊)) ∈ ℂ)
5944cnfldtopon 22324 . . . . . . . . . . . . . . 15 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
6059toponunii 20485 . . . . . . . . . . . . . 14 ℂ = (TopOpen‘ℂfld)
6160sncld 20923 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ Haus ∧ (0g‘(Scalar‘𝑊)) ∈ ℂ) → {(0g‘(Scalar‘𝑊))} ∈ (Clsd‘(TopOpen‘ℂfld)))
6251, 58, 61sylancr 693 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → {(0g‘(Scalar‘𝑊))} ∈ (Clsd‘(TopOpen‘ℂfld)))
63 cnclima 20820 . . . . . . . . . . . 12 (((𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ∧ {(0g‘(Scalar‘𝑊))} ∈ (Clsd‘(TopOpen‘ℂfld))) → ((𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) “ {(0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽))
6450, 62, 63syl2anc 690 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ((𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) “ {(0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽))
6543, 64syl5eqelr 2688 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽))
66 incld 20595 . . . . . . . . . 10 ((((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) ∧ {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽)) → (((cls‘𝐽)‘𝑆) ∩ {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽))
6739, 65, 66syl2anc 690 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (((cls‘𝐽)‘𝑆) ∩ {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽))
6836, 67eqeltrrd 2684 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽))
6917adantr 479 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
70 eqid 2605 . . . . . . . . . . . 12 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
715, 45, 53, 70, 18ocvi 19770 . . . . . . . . . . 11 ((𝑥 ∈ (𝑂𝑆) ∧ 𝑦𝑆) → (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
7271ralrimiva 2944 . . . . . . . . . 10 (𝑥 ∈ (𝑂𝑆) → ∀𝑦𝑆 (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
7372adantl 480 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ∀𝑦𝑆 (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
74 ssrab 3638 . . . . . . . . 9 (𝑆 ⊆ {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ↔ (𝑆 ⊆ ((cls‘𝐽)‘𝑆) ∧ ∀𝑦𝑆 (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
7569, 73, 74sylanbrc 694 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 𝑆 ⊆ {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
7615clsss2 20624 . . . . . . . 8 (({𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) → ((cls‘𝐽)‘𝑆) ⊆ {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
7768, 75, 76syl2anc 690 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ((cls‘𝐽)‘𝑆) ⊆ {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
78 ssrab2 3645 . . . . . . . 8 {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ⊆ ((cls‘𝐽)‘𝑆)
7978a1i 11 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ⊆ ((cls‘𝐽)‘𝑆))
8077, 79eqssd 3580 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ((cls‘𝐽)‘𝑆) = {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
81 rabid2 3091 . . . . . 6 (((cls‘𝐽)‘𝑆) = {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ↔ ∀𝑦 ∈ ((cls‘𝐽)‘𝑆)(𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
8280, 81sylib 206 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ∀𝑦 ∈ ((cls‘𝐽)‘𝑆)(𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
835, 45, 53, 70, 18elocv 19769 . . . . 5 (𝑥 ∈ (𝑂‘((cls‘𝐽)‘𝑆)) ↔ (((cls‘𝐽)‘𝑆) ⊆ 𝑉𝑥𝑉 ∧ ∀𝑦 ∈ ((cls‘𝐽)‘𝑆)(𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
8424, 27, 82, 83syl3anbrc 1238 . . . 4 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 𝑥 ∈ (𝑂‘((cls‘𝐽)‘𝑆)))
8584ex 448 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → (𝑥 ∈ (𝑂𝑆) → 𝑥 ∈ (𝑂‘((cls‘𝐽)‘𝑆))))
8685ssrdv 3569 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → (𝑂𝑆) ⊆ (𝑂‘((cls‘𝐽)‘𝑆)))
8720, 86eqssd 3580 1 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → (𝑂‘((cls‘𝐽)‘𝑆)) = (𝑂𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1975  {cab 2591  wral 2891  {crab 2895  Vcvv 3168  cin 3534  wss 3535  {csn 4120   cuni 4362  cmpt 4633  ccnv 5023  cima 5027  cfv 5786  (class class class)co 6523  cc 9786  0cc0 9788  Basecbs 15637  Scalarcsca 15713  ·𝑖cip 15715  TopOpenctopn 15847  0gc0g 15865  fldccnfld 19509  ocvcocv 19761  Topctop 20455  TopOnctopon 20456  TopSpctps 20457  Clsdccld 20568  clsccl 20570   Cn ccn 20776  Hauscha 20860  NrmGrpcngp 22129  ℂModcclm 22597  ℂPreHilccph 22694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-inf2 8394  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865  ax-pre-sup 9866  ax-addf 9867  ax-mulf 9868
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-iin 4448  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-se 4984  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-isom 5795  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-of 6768  df-om 6931  df-1st 7032  df-2nd 7033  df-supp 7156  df-tpos 7212  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-2o 7421  df-oadd 7424  df-er 7602  df-map 7719  df-ixp 7768  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-fsupp 8132  df-fi 8173  df-sup 8204  df-inf 8205  df-oi 8271  df-card 8621  df-cda 8846  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-div 10530  df-nn 10864  df-2 10922  df-3 10923  df-4 10924  df-5 10925  df-6 10926  df-7 10927  df-8 10928  df-9 10929  df-n0 11136  df-z 11207  df-dec 11322  df-uz 11516  df-q 11617  df-rp 11661  df-xneg 11774  df-xadd 11775  df-xmul 11776  df-ico 12004  df-icc 12005  df-fz 12149  df-fzo 12286  df-seq 12615  df-exp 12674  df-hash 12931  df-cj 13629  df-re 13630  df-im 13631  df-sqrt 13765  df-abs 13766  df-struct 15639  df-ndx 15640  df-slot 15641  df-base 15642  df-sets 15643  df-ress 15644  df-plusg 15723  df-mulr 15724  df-starv 15725  df-sca 15726  df-vsca 15727  df-ip 15728  df-tset 15729  df-ple 15730  df-ds 15733  df-unif 15734  df-hom 15735  df-cco 15736  df-rest 15848  df-topn 15849  df-0g 15867  df-gsum 15868  df-topgen 15869  df-pt 15870  df-prds 15873  df-xrs 15927  df-qtop 15932  df-imas 15933  df-xps 15935  df-mre 16011  df-mrc 16012  df-acs 16014  df-mgm 17007  df-sgrp 17049  df-mnd 17060  df-mhm 17100  df-submnd 17101  df-grp 17190  df-minusg 17191  df-sbg 17192  df-mulg 17306  df-subg 17356  df-ghm 17423  df-cntz 17515  df-cmn 17960  df-abl 17961  df-mgp 18255  df-ur 18267  df-ring 18314  df-cring 18315  df-oppr 18388  df-dvdsr 18406  df-unit 18407  df-invr 18437  df-dvr 18448  df-rnghom 18480  df-drng 18514  df-subrg 18543  df-staf 18610  df-srng 18611  df-lmod 18630  df-lmhm 18785  df-lvec 18866  df-sra 18935  df-rgmod 18936  df-psmet 19501  df-xmet 19502  df-met 19503  df-bl 19504  df-mopn 19505  df-cnfld 19510  df-phl 19731  df-ipf 19732  df-ocv 19764  df-top 20459  df-bases 20460  df-topon 20461  df-topsp 20462  df-cld 20571  df-cls 20573  df-cn 20779  df-cnp 20780  df-t1 20866  df-haus 20867  df-tx 21113  df-hmeo 21306  df-xms 21872  df-ms 21873  df-tms 21874  df-nm 22134  df-ngp 22135  df-tng 22136  df-nlm 22138  df-clm 22598  df-cph 22696  df-tch 22697
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator