MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsval2 Structured version   Visualization version   GIF version

Theorem clsval2 21048
Description: Express closure in terms of interior. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
clsval2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = (𝑋 ∖ ((int‘𝐽)‘(𝑋𝑆))))

Proof of Theorem clsval2
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 3051 . . . . . 6 {𝑧 ∈ (Clsd‘𝐽) ∣ 𝑆𝑧} = {𝑧 ∣ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)}
2 clscld.1 . . . . . . . . . . . . 13 𝑋 = 𝐽
32cldopn 21029 . . . . . . . . . . . 12 (𝑧 ∈ (Clsd‘𝐽) → (𝑋𝑧) ∈ 𝐽)
43ad2antrl 766 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → (𝑋𝑧) ∈ 𝐽)
5 sscon 3879 . . . . . . . . . . . . 13 (𝑆𝑧 → (𝑋𝑧) ⊆ (𝑋𝑆))
65ad2antll 767 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → (𝑋𝑧) ⊆ (𝑋𝑆))
72topopn 20905 . . . . . . . . . . . . . 14 (𝐽 ∈ Top → 𝑋𝐽)
8 difexg 4952 . . . . . . . . . . . . . 14 (𝑋𝐽 → (𝑋𝑧) ∈ V)
9 elpwg 4302 . . . . . . . . . . . . . 14 ((𝑋𝑧) ∈ V → ((𝑋𝑧) ∈ 𝒫 (𝑋𝑆) ↔ (𝑋𝑧) ⊆ (𝑋𝑆)))
107, 8, 93syl 18 . . . . . . . . . . . . 13 (𝐽 ∈ Top → ((𝑋𝑧) ∈ 𝒫 (𝑋𝑆) ↔ (𝑋𝑧) ⊆ (𝑋𝑆)))
1110ad2antrr 764 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → ((𝑋𝑧) ∈ 𝒫 (𝑋𝑆) ↔ (𝑋𝑧) ⊆ (𝑋𝑆)))
126, 11mpbird 247 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → (𝑋𝑧) ∈ 𝒫 (𝑋𝑆))
134, 12elind 3933 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → (𝑋𝑧) ∈ (𝐽 ∩ 𝒫 (𝑋𝑆)))
142cldss 21027 . . . . . . . . . . . . 13 (𝑧 ∈ (Clsd‘𝐽) → 𝑧𝑋)
1514ad2antrl 766 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → 𝑧𝑋)
16 dfss4 3993 . . . . . . . . . . . 12 (𝑧𝑋 ↔ (𝑋 ∖ (𝑋𝑧)) = 𝑧)
1715, 16sylib 208 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → (𝑋 ∖ (𝑋𝑧)) = 𝑧)
1817eqcomd 2758 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → 𝑧 = (𝑋 ∖ (𝑋𝑧)))
19 difeq2 3857 . . . . . . . . . . . 12 (𝑥 = (𝑋𝑧) → (𝑋𝑥) = (𝑋 ∖ (𝑋𝑧)))
2019eqeq2d 2762 . . . . . . . . . . 11 (𝑥 = (𝑋𝑧) → (𝑧 = (𝑋𝑥) ↔ 𝑧 = (𝑋 ∖ (𝑋𝑧))))
2120rspcev 3441 . . . . . . . . . 10 (((𝑋𝑧) ∈ (𝐽 ∩ 𝒫 (𝑋𝑆)) ∧ 𝑧 = (𝑋 ∖ (𝑋𝑧))) → ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥))
2213, 18, 21syl2anc 696 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥))
2322ex 449 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧) → ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥)))
24 simpl 474 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝐽 ∈ Top)
25 elin 3931 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆)) ↔ (𝑥𝐽𝑥 ∈ 𝒫 (𝑋𝑆)))
2625simplbi 478 . . . . . . . . . . . 12 (𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆)) → 𝑥𝐽)
272opncld 21031 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (𝑋𝑥) ∈ (Clsd‘𝐽))
2824, 26, 27syl2an 495 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → (𝑋𝑥) ∈ (Clsd‘𝐽))
2925simprbi 483 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆)) → 𝑥 ∈ 𝒫 (𝑋𝑆))
3029adantl 473 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → 𝑥 ∈ 𝒫 (𝑋𝑆))
3130elpwid 4306 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → 𝑥 ⊆ (𝑋𝑆))
3231difss2d 3875 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → 𝑥𝑋)
33 simplr 809 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → 𝑆𝑋)
34 ssconb 3878 . . . . . . . . . . . . 13 ((𝑥𝑋𝑆𝑋) → (𝑥 ⊆ (𝑋𝑆) ↔ 𝑆 ⊆ (𝑋𝑥)))
3532, 33, 34syl2anc 696 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → (𝑥 ⊆ (𝑋𝑆) ↔ 𝑆 ⊆ (𝑋𝑥)))
3631, 35mpbid 222 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → 𝑆 ⊆ (𝑋𝑥))
3728, 36jca 555 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → ((𝑋𝑥) ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ (𝑋𝑥)))
38 eleq1 2819 . . . . . . . . . . 11 (𝑧 = (𝑋𝑥) → (𝑧 ∈ (Clsd‘𝐽) ↔ (𝑋𝑥) ∈ (Clsd‘𝐽)))
39 sseq2 3760 . . . . . . . . . . 11 (𝑧 = (𝑋𝑥) → (𝑆𝑧𝑆 ⊆ (𝑋𝑥)))
4038, 39anbi12d 749 . . . . . . . . . 10 (𝑧 = (𝑋𝑥) → ((𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧) ↔ ((𝑋𝑥) ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ (𝑋𝑥))))
4137, 40syl5ibrcom 237 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → (𝑧 = (𝑋𝑥) → (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)))
4241rexlimdva 3161 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥) → (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)))
4323, 42impbid 202 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧) ↔ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥)))
4443abbidv 2871 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → {𝑧 ∣ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)} = {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥)})
451, 44syl5eq 2798 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → {𝑧 ∈ (Clsd‘𝐽) ∣ 𝑆𝑧} = {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥)})
4645inteqd 4624 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → {𝑧 ∈ (Clsd‘𝐽) ∣ 𝑆𝑧} = {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥)})
47 difexg 4952 . . . . . . 7 (𝑋𝐽 → (𝑋𝑥) ∈ V)
4847ralrimivw 3097 . . . . . 6 (𝑋𝐽 → ∀𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥) ∈ V)
49 dfiin2g 4697 . . . . . 6 (∀𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥) ∈ V → 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥) = {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥)})
507, 48, 493syl 18 . . . . 5 (𝐽 ∈ Top → 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥) = {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥)})
5150adantr 472 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥) = {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥)})
5246, 51eqtr4d 2789 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → {𝑧 ∈ (Clsd‘𝐽) ∣ 𝑆𝑧} = 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥))
532clsval 21035 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = {𝑧 ∈ (Clsd‘𝐽) ∣ 𝑆𝑧})
54 uniiun 4717 . . . . . 6 (𝐽 ∩ 𝒫 (𝑋𝑆)) = 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑥
5554difeq2i 3860 . . . . 5 (𝑋 (𝐽 ∩ 𝒫 (𝑋𝑆))) = (𝑋 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑥)
5655a1i 11 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑋 (𝐽 ∩ 𝒫 (𝑋𝑆))) = (𝑋 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑥))
57 0opn 20903 . . . . . . 7 (𝐽 ∈ Top → ∅ ∈ 𝐽)
5857adantr 472 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ∅ ∈ 𝐽)
59 0elpw 4975 . . . . . . 7 ∅ ∈ 𝒫 (𝑋𝑆)
6059a1i 11 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ∅ ∈ 𝒫 (𝑋𝑆))
6158, 60elind 3933 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ∅ ∈ (𝐽 ∩ 𝒫 (𝑋𝑆)))
62 ne0i 4056 . . . . 5 (∅ ∈ (𝐽 ∩ 𝒫 (𝑋𝑆)) → (𝐽 ∩ 𝒫 (𝑋𝑆)) ≠ ∅)
63 iindif2 4733 . . . . 5 ((𝐽 ∩ 𝒫 (𝑋𝑆)) ≠ ∅ → 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥) = (𝑋 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑥))
6461, 62, 633syl 18 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥) = (𝑋 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑥))
6556, 64eqtr4d 2789 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑋 (𝐽 ∩ 𝒫 (𝑋𝑆))) = 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥))
6652, 53, 653eqtr4d 2796 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = (𝑋 (𝐽 ∩ 𝒫 (𝑋𝑆))))
67 difssd 3873 . . . 4 (𝑆𝑋 → (𝑋𝑆) ⊆ 𝑋)
682ntrval 21034 . . . 4 ((𝐽 ∈ Top ∧ (𝑋𝑆) ⊆ 𝑋) → ((int‘𝐽)‘(𝑋𝑆)) = (𝐽 ∩ 𝒫 (𝑋𝑆)))
6967, 68sylan2 492 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘(𝑋𝑆)) = (𝐽 ∩ 𝒫 (𝑋𝑆)))
7069difeq2d 3863 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑋 ∖ ((int‘𝐽)‘(𝑋𝑆))) = (𝑋 (𝐽 ∩ 𝒫 (𝑋𝑆))))
7166, 70eqtr4d 2789 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = (𝑋 ∖ ((int‘𝐽)‘(𝑋𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1624  wcel 2131  {cab 2738  wne 2924  wral 3042  wrex 3043  {crab 3046  Vcvv 3332  cdif 3704  cin 3706  wss 3707  c0 4050  𝒫 cpw 4294   cuni 4580   cint 4619   ciun 4664   ciin 4665  cfv 6041  Topctop 20892  Clsdccld 21014  intcnt 21015  clsccl 21016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-iin 4667  df-br 4797  df-opab 4857  df-mpt 4874  df-id 5166  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-top 20893  df-cld 21017  df-ntr 21018  df-cls 21019
This theorem is referenced by:  ntrval2  21049  clsdif  21051  cmclsopn  21060  bcth3  23320
  Copyright terms: Public domain W3C validator