MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlk Structured version   Visualization version   GIF version

Theorem clwlkclwwlk 27707
Description: A closed walk as word of length at least 2 corresponds to a closed walk in a simple pseudograph. (Contributed by Alexander van der Vekens, 22-Jun-2018.) (Revised by AV, 24-Apr-2021.) (Revised by AV, 30-Oct-2022.)
Hypotheses
Ref Expression
clwlkclwwlk.v 𝑉 = (Vtx‘𝐺)
clwlkclwwlk.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
clwlkclwwlk ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓 𝑓(ClWalks‘𝐺)𝑃 ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ (𝑃 prefix ((♯‘𝑃) − 1)) ∈ (ClWWalks‘𝐺))))
Distinct variable groups:   𝑓,𝐸   𝑃,𝑓   𝑓,𝑉   𝑓,𝐺

Proof of Theorem clwlkclwwlk
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 clwlkclwwlk.e . . . . . 6 𝐸 = (iEdg‘𝐺)
21uspgrf1oedg 26885 . . . . 5 (𝐺 ∈ USPGraph → 𝐸:dom 𝐸1-1-onto→(Edg‘𝐺))
3 f1of1 6607 . . . . 5 (𝐸:dom 𝐸1-1-onto→(Edg‘𝐺) → 𝐸:dom 𝐸1-1→(Edg‘𝐺))
42, 3syl 17 . . . 4 (𝐺 ∈ USPGraph → 𝐸:dom 𝐸1-1→(Edg‘𝐺))
5 clwlkclwwlklem3 27706 . . . 4 ((𝐸:dom 𝐸1-1→(Edg‘𝐺) ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))))
64, 5syl3an1 1155 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))))
7 lencl 13871 . . . . . . . . . . . . . 14 (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℕ0)
8 ige2m1fz 12985 . . . . . . . . . . . . . 14 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈ (0...(♯‘𝑃)))
97, 8sylan 580 . . . . . . . . . . . . 13 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈ (0...(♯‘𝑃)))
10 pfxlen 14033 . . . . . . . . . . . . 13 ((𝑃 ∈ Word 𝑉 ∧ ((♯‘𝑃) − 1) ∈ (0...(♯‘𝑃))) → (♯‘(𝑃 prefix ((♯‘𝑃) − 1))) = ((♯‘𝑃) − 1))
119, 10syldan 591 . . . . . . . . . . . 12 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (♯‘(𝑃 prefix ((♯‘𝑃) − 1))) = ((♯‘𝑃) − 1))
127nn0cnd 11945 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℂ)
13 1cnd 10624 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Word 𝑉 → 1 ∈ ℂ)
1412, 13subcld 10985 . . . . . . . . . . . . . . 15 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − 1) ∈ ℂ)
1514subid1d 10974 . . . . . . . . . . . . . 14 (𝑃 ∈ Word 𝑉 → (((♯‘𝑃) − 1) − 0) = ((♯‘𝑃) − 1))
1615eqcomd 2824 . . . . . . . . . . . . 13 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − 1) = (((♯‘𝑃) − 1) − 0))
1716adantr 481 . . . . . . . . . . . 12 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) = (((♯‘𝑃) − 1) − 0))
1811, 17eqtrd 2853 . . . . . . . . . . 11 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (♯‘(𝑃 prefix ((♯‘𝑃) − 1))) = (((♯‘𝑃) − 1) − 0))
1918oveq1d 7160 . . . . . . . . . 10 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1) = ((((♯‘𝑃) − 1) − 0) − 1))
2019oveq2d 7161 . . . . . . . . 9 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)) = (0..^((((♯‘𝑃) − 1) − 0) − 1)))
2111oveq1d 7160 . . . . . . . . . . . . 13 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1) = (((♯‘𝑃) − 1) − 1))
2221oveq2d 7161 . . . . . . . . . . . 12 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)) = (0..^(((♯‘𝑃) − 1) − 1)))
2322eleq2d 2895 . . . . . . . . . . 11 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)) ↔ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))))
24 simpll 763 . . . . . . . . . . . . . . 15 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → 𝑃 ∈ Word 𝑉)
25 wrdlenge2n0 13892 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → 𝑃 ≠ ∅)
2625adantr 481 . . . . . . . . . . . . . . 15 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → 𝑃 ≠ ∅)
27 nn0z 11993 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ)
28 peano2zm 12013 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑃) ∈ ℤ → ((♯‘𝑃) − 1) ∈ ℤ)
2927, 28syl 17 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) ∈ ℤ)
307, 29syl 17 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − 1) ∈ ℤ)
3130adantr 481 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈ ℤ)
32 elfzom1elfzo 13093 . . . . . . . . . . . . . . . 16 ((((♯‘𝑃) − 1) ∈ ℤ ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → 𝑖 ∈ (0..^((♯‘𝑃) − 1)))
3331, 32sylan 580 . . . . . . . . . . . . . . 15 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → 𝑖 ∈ (0..^((♯‘𝑃) − 1)))
34 pfxtrcfv 14043 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Word 𝑉𝑃 ≠ ∅ ∧ 𝑖 ∈ (0..^((♯‘𝑃) − 1))) → ((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖) = (𝑃𝑖))
3524, 26, 33, 34syl3anc 1363 . . . . . . . . . . . . . 14 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → ((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖) = (𝑃𝑖))
367adantr 481 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℕ0)
37 elfzom1elp1fzo 13092 . . . . . . . . . . . . . . . . 17 ((((♯‘𝑃) − 1) ∈ ℤ ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → (𝑖 + 1) ∈ (0..^((♯‘𝑃) − 1)))
3829, 37sylan 580 . . . . . . . . . . . . . . . 16 (((♯‘𝑃) ∈ ℕ0𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → (𝑖 + 1) ∈ (0..^((♯‘𝑃) − 1)))
3936, 38sylan 580 . . . . . . . . . . . . . . 15 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → (𝑖 + 1) ∈ (0..^((♯‘𝑃) − 1)))
40 pfxtrcfv 14043 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Word 𝑉𝑃 ≠ ∅ ∧ (𝑖 + 1) ∈ (0..^((♯‘𝑃) − 1))) → ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1)))
4124, 26, 39, 40syl3anc 1363 . . . . . . . . . . . . . 14 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1)))
4235, 41preq12d 4669 . . . . . . . . . . . . 13 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → {((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
4342eleq1d 2894 . . . . . . . . . . . 12 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → ({((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
4443ex 413 . . . . . . . . . . 11 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1)) → ({((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸)))
4523, 44sylbid 241 . . . . . . . . . 10 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)) → ({((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸)))
4645imp 407 . . . . . . . . 9 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1))) → ({((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
4720, 46raleqbidva 3423 . . . . . . . 8 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ↔ ∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
48 pfxtrcfvl 14047 . . . . . . . . . 10 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (lastS‘(𝑃 prefix ((♯‘𝑃) − 1))) = (𝑃‘((♯‘𝑃) − 2)))
49 pfxtrcfv0 14044 . . . . . . . . . 10 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((𝑃 prefix ((♯‘𝑃) − 1))‘0) = (𝑃‘0))
5048, 49preq12d 4669 . . . . . . . . 9 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} = {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)})
5150eleq1d 2894 . . . . . . . 8 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ({(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸 ↔ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))
5247, 51anbi12d 630 . . . . . . 7 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸) ↔ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)))
5352bicomd 224 . . . . . 6 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸) ↔ (∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸)))
54533adant1 1122 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸) ↔ (∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸)))
55 pfxcl 14027 . . . . . . 7 (𝑃 ∈ Word 𝑉 → (𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉)
56553ad2ant2 1126 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉)
57563biant1d 1469 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸) ↔ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸)))
5854, 57bitrd 280 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸) ↔ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸)))
5958anbi2d 628 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸))))
606, 59bitrd 280 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸))))
61 uspgrupgr 26888 . . . . . 6 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
62 clwlkclwwlk.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
6362, 1isclwlkupgr 27486 . . . . . . 7 (𝐺 ∈ UPGraph → (𝑓(ClWalks‘𝐺)𝑃 ↔ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉) ∧ (∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))))))
64 3an4anass 1097 . . . . . . 7 (((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) ↔ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉) ∧ (∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))))
6563, 64syl6bbr 290 . . . . . 6 (𝐺 ∈ UPGraph → (𝑓(ClWalks‘𝐺)𝑃 ↔ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))))
6661, 65syl 17 . . . . 5 (𝐺 ∈ USPGraph → (𝑓(ClWalks‘𝐺)𝑃 ↔ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))))
6766adantr 481 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉) → (𝑓(ClWalks‘𝐺)𝑃 ↔ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))))
6867exbidv 1913 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉) → (∃𝑓 𝑓(ClWalks‘𝐺)𝑃 ↔ ∃𝑓((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))))
69683adant3 1124 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓 𝑓(ClWalks‘𝐺)𝑃 ↔ ∃𝑓((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))))
70 eqid 2818 . . . . . 6 (Edg‘𝐺) = (Edg‘𝐺)
7162, 70isclwwlk 27689 . . . . 5 ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ (ClWWalks‘𝐺) ↔ (((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ (𝑃 prefix ((♯‘𝑃) − 1)) ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ (Edg‘𝐺)))
72 simpl 483 . . . . . . . . . . 11 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → 𝑃 ∈ Word 𝑉)
73 nn0ge2m1nn 11952 . . . . . . . . . . . 12 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈ ℕ)
747, 73sylan 580 . . . . . . . . . . 11 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈ ℕ)
75 nn0re 11894 . . . . . . . . . . . . . . 15 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ)
7675lem1d 11561 . . . . . . . . . . . . . 14 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) ≤ (♯‘𝑃))
7776a1d 25 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℕ0 → (2 ≤ (♯‘𝑃) → ((♯‘𝑃) − 1) ≤ (♯‘𝑃)))
787, 77syl 17 . . . . . . . . . . . 12 (𝑃 ∈ Word 𝑉 → (2 ≤ (♯‘𝑃) → ((♯‘𝑃) − 1) ≤ (♯‘𝑃)))
7978imp 407 . . . . . . . . . . 11 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ≤ (♯‘𝑃))
8072, 74, 793jca 1120 . . . . . . . . . 10 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑃 ∈ Word 𝑉 ∧ ((♯‘𝑃) − 1) ∈ ℕ ∧ ((♯‘𝑃) − 1) ≤ (♯‘𝑃)))
81803adant1 1122 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑃 ∈ Word 𝑉 ∧ ((♯‘𝑃) − 1) ∈ ℕ ∧ ((♯‘𝑃) − 1) ≤ (♯‘𝑃)))
82 pfxn0 14036 . . . . . . . . 9 ((𝑃 ∈ Word 𝑉 ∧ ((♯‘𝑃) − 1) ∈ ℕ ∧ ((♯‘𝑃) − 1) ≤ (♯‘𝑃)) → (𝑃 prefix ((♯‘𝑃) − 1)) ≠ ∅)
8381, 82syl 17 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑃 prefix ((♯‘𝑃) − 1)) ≠ ∅)
8483biantrud 532 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ↔ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ (𝑃 prefix ((♯‘𝑃) − 1)) ≠ ∅)))
8584bicomd 224 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ (𝑃 prefix ((♯‘𝑃) − 1)) ≠ ∅) ↔ (𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉))
86853anbi1d 1431 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ (𝑃 prefix ((♯‘𝑃) − 1)) ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ (Edg‘𝐺)) ↔ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ (Edg‘𝐺))))
8771, 86syl5bb 284 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ (ClWWalks‘𝐺) ↔ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ (Edg‘𝐺))))
88 biid 262 . . . . 5 ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ↔ (𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉)
89 edgval 26761 . . . . . . . 8 (Edg‘𝐺) = ran (iEdg‘𝐺)
901eqcomi 2827 . . . . . . . . 9 (iEdg‘𝐺) = 𝐸
9190rneqi 5800 . . . . . . . 8 ran (iEdg‘𝐺) = ran 𝐸
9289, 91eqtri 2841 . . . . . . 7 (Edg‘𝐺) = ran 𝐸
9392eleq2i 2901 . . . . . 6 ({((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸)
9493ralbii 3162 . . . . 5 (∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸)
9592eleq2i 2901 . . . . 5 ({(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ (Edg‘𝐺) ↔ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸)
9688, 94, 953anbi123i 1147 . . . 4 (((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ (Edg‘𝐺)) ↔ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸))
9787, 96syl6bb 288 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ (ClWWalks‘𝐺) ↔ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸)))
9897anbi2d 628 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((lastS‘𝑃) = (𝑃‘0) ∧ (𝑃 prefix ((♯‘𝑃) − 1)) ∈ (ClWWalks‘𝐺)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸))))
9960, 69, 983bitr4d 312 1 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓 𝑓(ClWalks‘𝐺)𝑃 ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ (𝑃 prefix ((♯‘𝑃) − 1)) ∈ (ClWWalks‘𝐺))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wex 1771  wcel 2105  wne 3013  wral 3135  c0 4288  {cpr 4559   class class class wbr 5057  dom cdm 5548  ran crn 5549  wf 6344  1-1wf1 6345  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7145  0cc0 10525  1c1 10526   + caddc 10528  cle 10664  cmin 10858  cn 11626  2c2 11680  0cn0 11885  cz 11969  ...cfz 12880  ..^cfzo 13021  chash 13678  Word cword 13849  lastSclsw 13902   prefix cpfx 14020  Vtxcvtx 26708  iEdgciedg 26709  Edgcedg 26759  UPGraphcupgr 26792  USPGraphcuspgr 26860  ClWalkscclwlks 27478  ClWWalkscclwwlk 27686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-ifp 1055  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-hash 13679  df-word 13850  df-lsw 13903  df-substr 13991  df-pfx 14021  df-edg 26760  df-uhgr 26770  df-upgr 26794  df-uspgr 26862  df-wlks 27308  df-clwlks 27479  df-clwwlk 27687
This theorem is referenced by:  clwlkclwwlk2  27708  clwlkclwwlkf  27713
  Copyright terms: Public domain W3C validator