MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlkf1lem2 Structured version   Visualization version   GIF version

Theorem clwlkclwwlkf1lem2 27710
Description: Lemma 2 for clwlkclwwlkf1 27715. (Contributed by AV, 24-May-2022.) (Revised by AV, 30-Oct-2022.)
Hypotheses
Ref Expression
clwlkclwwlkf.c 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
clwlkclwwlkf.a 𝐴 = (1st𝑈)
clwlkclwwlkf.b 𝐵 = (2nd𝑈)
clwlkclwwlkf.d 𝐷 = (1st𝑊)
clwlkclwwlkf.e 𝐸 = (2nd𝑊)
Assertion
Ref Expression
clwlkclwwlkf1lem2 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖)))
Distinct variable groups:   𝑖,𝐺   𝑤,𝐺   𝑤,𝐴   𝑤,𝑈   𝐴,𝑖   𝐵,𝑖   𝐷,𝑖   𝑤,𝐷   𝑖,𝐸   𝑤,𝑊
Allowed substitution hints:   𝐵(𝑤)   𝐶(𝑤,𝑖)   𝑈(𝑖)   𝐸(𝑤)   𝑊(𝑖)

Proof of Theorem clwlkclwwlkf1lem2
StepHypRef Expression
1 clwlkclwwlkf.c . . . . 5 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
2 clwlkclwwlkf.a . . . . 5 𝐴 = (1st𝑈)
3 clwlkclwwlkf.b . . . . 5 𝐵 = (2nd𝑈)
41, 2, 3clwlkclwwlkflem 27709 . . . 4 (𝑈𝐶 → (𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ))
5 clwlkclwwlkf.d . . . . 5 𝐷 = (1st𝑊)
6 clwlkclwwlkf.e . . . . 5 𝐸 = (2nd𝑊)
71, 5, 6clwlkclwwlkflem 27709 . . . 4 (𝑊𝐶 → (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ))
84, 7anim12i 612 . . 3 ((𝑈𝐶𝑊𝐶) → ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)))
9 eqid 2818 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
109wlkpwrd 27326 . . . . . 6 (𝐴(Walks‘𝐺)𝐵𝐵 ∈ Word (Vtx‘𝐺))
11103ad2ant1 1125 . . . . 5 ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → 𝐵 ∈ Word (Vtx‘𝐺))
129wlkpwrd 27326 . . . . . 6 (𝐷(Walks‘𝐺)𝐸𝐸 ∈ Word (Vtx‘𝐺))
13123ad2ant1 1125 . . . . 5 ((𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ) → 𝐸 ∈ Word (Vtx‘𝐺))
1411, 13anim12i 612 . . . 4 (((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) → (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐸 ∈ Word (Vtx‘𝐺)))
15 nnnn0 11892 . . . . . 6 ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ∈ ℕ0)
16153ad2ant3 1127 . . . . 5 ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → (♯‘𝐴) ∈ ℕ0)
17 nnnn0 11892 . . . . . 6 ((♯‘𝐷) ∈ ℕ → (♯‘𝐷) ∈ ℕ0)
18173ad2ant3 1127 . . . . 5 ((𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ) → (♯‘𝐷) ∈ ℕ0)
1916, 18anim12i 612 . . . 4 (((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) → ((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐷) ∈ ℕ0))
20 wlklenvp1 27327 . . . . . . . 8 (𝐴(Walks‘𝐺)𝐵 → (♯‘𝐵) = ((♯‘𝐴) + 1))
21 nnre 11633 . . . . . . . . . 10 ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ∈ ℝ)
2221lep1d 11559 . . . . . . . . 9 ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ≤ ((♯‘𝐴) + 1))
23 breq2 5061 . . . . . . . . 9 ((♯‘𝐵) = ((♯‘𝐴) + 1) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ (♯‘𝐴) ≤ ((♯‘𝐴) + 1)))
2422, 23syl5ibr 247 . . . . . . . 8 ((♯‘𝐵) = ((♯‘𝐴) + 1) → ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ≤ (♯‘𝐵)))
2520, 24syl 17 . . . . . . 7 (𝐴(Walks‘𝐺)𝐵 → ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ≤ (♯‘𝐵)))
2625a1d 25 . . . . . 6 (𝐴(Walks‘𝐺)𝐵 → ((𝐵‘0) = (𝐵‘(♯‘𝐴)) → ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ≤ (♯‘𝐵))))
27263imp 1103 . . . . 5 ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → (♯‘𝐴) ≤ (♯‘𝐵))
28 wlklenvp1 27327 . . . . . . . 8 (𝐷(Walks‘𝐺)𝐸 → (♯‘𝐸) = ((♯‘𝐷) + 1))
29 nnre 11633 . . . . . . . . . 10 ((♯‘𝐷) ∈ ℕ → (♯‘𝐷) ∈ ℝ)
3029lep1d 11559 . . . . . . . . 9 ((♯‘𝐷) ∈ ℕ → (♯‘𝐷) ≤ ((♯‘𝐷) + 1))
31 breq2 5061 . . . . . . . . 9 ((♯‘𝐸) = ((♯‘𝐷) + 1) → ((♯‘𝐷) ≤ (♯‘𝐸) ↔ (♯‘𝐷) ≤ ((♯‘𝐷) + 1)))
3230, 31syl5ibr 247 . . . . . . . 8 ((♯‘𝐸) = ((♯‘𝐷) + 1) → ((♯‘𝐷) ∈ ℕ → (♯‘𝐷) ≤ (♯‘𝐸)))
3328, 32syl 17 . . . . . . 7 (𝐷(Walks‘𝐺)𝐸 → ((♯‘𝐷) ∈ ℕ → (♯‘𝐷) ≤ (♯‘𝐸)))
3433a1d 25 . . . . . 6 (𝐷(Walks‘𝐺)𝐸 → ((𝐸‘0) = (𝐸‘(♯‘𝐷)) → ((♯‘𝐷) ∈ ℕ → (♯‘𝐷) ≤ (♯‘𝐸))))
35343imp 1103 . . . . 5 ((𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ) → (♯‘𝐷) ≤ (♯‘𝐸))
3627, 35anim12i 612 . . . 4 (((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) → ((♯‘𝐴) ≤ (♯‘𝐵) ∧ (♯‘𝐷) ≤ (♯‘𝐸)))
3714, 19, 363jca 1120 . . 3 (((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) → ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐸 ∈ Word (Vtx‘𝐺)) ∧ ((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐷) ∈ ℕ0) ∧ ((♯‘𝐴) ≤ (♯‘𝐵) ∧ (♯‘𝐷) ≤ (♯‘𝐸))))
38 pfxeq 14046 . . 3 (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐸 ∈ Word (Vtx‘𝐺)) ∧ ((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐷) ∈ ℕ0) ∧ ((♯‘𝐴) ≤ (♯‘𝐵) ∧ (♯‘𝐷) ≤ (♯‘𝐸))) → ((𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷)) ↔ ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖))))
398, 37, 383syl 18 . 2 ((𝑈𝐶𝑊𝐶) → ((𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷)) ↔ ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖))))
4039biimp3a 1460 1 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3135  {crab 3139   class class class wbr 5057  cfv 6348  (class class class)co 7145  1st c1st 7676  2nd c2nd 7677  0cc0 10525  1c1 10526   + caddc 10528  cle 10664  cn 11626  0cn0 11885  ..^cfzo 13021  chash 13678  Word cword 13849   prefix cpfx 14020  Vtxcvtx 26708  Walkscwlks 27305  ClWalkscclwlks 27478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-ifp 1055  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-hash 13679  df-word 13850  df-substr 13991  df-pfx 14021  df-wlks 27308  df-clwlks 27479
This theorem is referenced by:  clwlkclwwlkf1lem3  27711  clwlkclwwlkf1  27715
  Copyright terms: Public domain W3C validator