MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlklem2a1 Structured version   Visualization version   GIF version

Theorem clwlkclwwlklem2a1 27107
Description: Lemma 1 for clwlkclwwlklem2a 27113. (Contributed by Alexander van der Vekens, 21-Jun-2018.) (Revised by AV, 11-Apr-2021.)
Assertion
Ref Expression
clwlkclwwlklem2a1 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
Distinct variable groups:   𝑖,𝐸   𝑃,𝑖
Allowed substitution hint:   𝑉(𝑖)

Proof of Theorem clwlkclwwlklem2a1
StepHypRef Expression
1 lencl 13502 . . . . . . . . . . . 12 (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℕ0)
2 nn0cn 11486 . . . . . . . . . . . 12 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℂ)
3 peano2cnm 10531 . . . . . . . . . . . . . . 15 ((♯‘𝑃) ∈ ℂ → ((♯‘𝑃) − 1) ∈ ℂ)
43subid1d 10565 . . . . . . . . . . . . . 14 ((♯‘𝑃) ∈ ℂ → (((♯‘𝑃) − 1) − 0) = ((♯‘𝑃) − 1))
54oveq1d 6820 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℂ → ((((♯‘𝑃) − 1) − 0) − 1) = (((♯‘𝑃) − 1) − 1))
6 sub1m1 11468 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℂ → (((♯‘𝑃) − 1) − 1) = ((♯‘𝑃) − 2))
75, 6eqtrd 2786 . . . . . . . . . . . 12 ((♯‘𝑃) ∈ ℂ → ((((♯‘𝑃) − 1) − 0) − 1) = ((♯‘𝑃) − 2))
81, 2, 73syl 18 . . . . . . . . . . 11 (𝑃 ∈ Word 𝑉 → ((((♯‘𝑃) − 1) − 0) − 1) = ((♯‘𝑃) − 2))
98adantr 472 . . . . . . . . . 10 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((((♯‘𝑃) − 1) − 0) − 1) = ((♯‘𝑃) − 2))
109oveq2d 6821 . . . . . . . . 9 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (0..^((((♯‘𝑃) − 1) − 0) − 1)) = (0..^((♯‘𝑃) − 2)))
1110raleqdv 3275 . . . . . . . 8 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ ∀𝑖 ∈ (0..^((♯‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
1211biimpcd 239 . . . . . . 7 (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
1312adantr 472 . . . . . 6 ((∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸) → ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
1413adantl 473 . . . . 5 ((( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
1514impcom 445 . . . 4 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸)
16 lsw 13530 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Word 𝑉 → ( lastS ‘𝑃) = (𝑃‘((♯‘𝑃) − 1)))
17 2m1e1 11319 . . . . . . . . . . . . . . . . . . . . 21 (2 − 1) = 1
1817a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ Word 𝑉 → (2 − 1) = 1)
1918eqcomd 2758 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Word 𝑉 → 1 = (2 − 1))
2019oveq2d 6821 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − 1) = ((♯‘𝑃) − (2 − 1)))
211, 2syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℂ)
22 2cnd 11277 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Word 𝑉 → 2 ∈ ℂ)
23 1cnd 10240 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Word 𝑉 → 1 ∈ ℂ)
2421, 22, 23subsubd 10604 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − (2 − 1)) = (((♯‘𝑃) − 2) + 1))
2520, 24eqtrd 2786 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − 1) = (((♯‘𝑃) − 2) + 1))
2625fveq2d 6348 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Word 𝑉 → (𝑃‘((♯‘𝑃) − 1)) = (𝑃‘(((♯‘𝑃) − 2) + 1)))
2716, 26eqtrd 2786 . . . . . . . . . . . . . . 15 (𝑃 ∈ Word 𝑉 → ( lastS ‘𝑃) = (𝑃‘(((♯‘𝑃) − 2) + 1)))
2827adantr 472 . . . . . . . . . . . . . 14 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ( lastS ‘𝑃) = (𝑃‘(((♯‘𝑃) − 2) + 1)))
2928adantr 472 . . . . . . . . . . . . 13 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ( lastS ‘𝑃) = (𝑃‘0)) → ( lastS ‘𝑃) = (𝑃‘(((♯‘𝑃) − 2) + 1)))
30 eqeq1 2756 . . . . . . . . . . . . . 14 (( lastS ‘𝑃) = (𝑃‘0) → (( lastS ‘𝑃) = (𝑃‘(((♯‘𝑃) − 2) + 1)) ↔ (𝑃‘0) = (𝑃‘(((♯‘𝑃) − 2) + 1))))
3130adantl 473 . . . . . . . . . . . . 13 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ( lastS ‘𝑃) = (𝑃‘0)) → (( lastS ‘𝑃) = (𝑃‘(((♯‘𝑃) − 2) + 1)) ↔ (𝑃‘0) = (𝑃‘(((♯‘𝑃) − 2) + 1))))
3229, 31mpbid 222 . . . . . . . . . . . 12 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ( lastS ‘𝑃) = (𝑃‘0)) → (𝑃‘0) = (𝑃‘(((♯‘𝑃) − 2) + 1)))
3332preq2d 4411 . . . . . . . . . . 11 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ( lastS ‘𝑃) = (𝑃‘0)) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} = {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))})
3433eleq1d 2816 . . . . . . . . . 10 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ( lastS ‘𝑃) = (𝑃‘0)) → ({(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸 ↔ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸))
3534biimpd 219 . . . . . . . . 9 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ( lastS ‘𝑃) = (𝑃‘0)) → ({(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸 → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸))
3635ex 449 . . . . . . . 8 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (( lastS ‘𝑃) = (𝑃‘0) → ({(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸 → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸)))
3736com13 88 . . . . . . 7 ({(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸 → (( lastS ‘𝑃) = (𝑃‘0) → ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸)))
3837adantl 473 . . . . . 6 ((∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸) → (( lastS ‘𝑃) = (𝑃‘0) → ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸)))
3938impcom 445 . . . . 5 ((( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸))
4039impcom 445 . . . 4 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸)
41 ovexd 6835 . . . . 5 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → ((♯‘𝑃) − 2) ∈ V)
42 fveq2 6344 . . . . . . . 8 (𝑖 = ((♯‘𝑃) − 2) → (𝑃𝑖) = (𝑃‘((♯‘𝑃) − 2)))
43 oveq1 6812 . . . . . . . . 9 (𝑖 = ((♯‘𝑃) − 2) → (𝑖 + 1) = (((♯‘𝑃) − 2) + 1))
4443fveq2d 6348 . . . . . . . 8 (𝑖 = ((♯‘𝑃) − 2) → (𝑃‘(𝑖 + 1)) = (𝑃‘(((♯‘𝑃) − 2) + 1)))
4542, 44preq12d 4412 . . . . . . 7 (𝑖 = ((♯‘𝑃) − 2) → {(𝑃𝑖), (𝑃‘(𝑖 + 1))} = {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))})
4645eleq1d 2816 . . . . . 6 (𝑖 = ((♯‘𝑃) − 2) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸))
4746ralunsn 4566 . . . . 5 (((♯‘𝑃) − 2) ∈ V → (∀𝑖 ∈ ((0..^((♯‘𝑃) − 2)) ∪ {((♯‘𝑃) − 2)}){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ (∀𝑖 ∈ (0..^((♯‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸)))
4841, 47syl 17 . . . 4 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → (∀𝑖 ∈ ((0..^((♯‘𝑃) − 2)) ∪ {((♯‘𝑃) − 2)}){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ (∀𝑖 ∈ (0..^((♯‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸)))
4915, 40, 48mpbir2and 995 . . 3 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → ∀𝑖 ∈ ((0..^((♯‘𝑃) − 2)) ∪ {((♯‘𝑃) − 2)}){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸)
50 1e2m1 11320 . . . . . . . . . . 11 1 = (2 − 1)
5150a1i 11 . . . . . . . . . 10 (𝑃 ∈ Word 𝑉 → 1 = (2 − 1))
5251oveq2d 6821 . . . . . . . . 9 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − 1) = ((♯‘𝑃) − (2 − 1)))
5352, 24eqtrd 2786 . . . . . . . 8 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − 1) = (((♯‘𝑃) − 2) + 1))
5453oveq2d 6821 . . . . . . 7 (𝑃 ∈ Word 𝑉 → (0..^((♯‘𝑃) − 1)) = (0..^(((♯‘𝑃) − 2) + 1)))
5554adantr 472 . . . . . 6 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (0..^((♯‘𝑃) − 1)) = (0..^(((♯‘𝑃) − 2) + 1)))
56 nn0re 11485 . . . . . . . . . . . . . 14 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ)
57 2re 11274 . . . . . . . . . . . . . . 15 2 ∈ ℝ
5857a1i 11 . . . . . . . . . . . . . 14 ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℝ)
5956, 58subge0d 10801 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℕ0 → (0 ≤ ((♯‘𝑃) − 2) ↔ 2 ≤ (♯‘𝑃)))
6059biimprd 238 . . . . . . . . . . . 12 ((♯‘𝑃) ∈ ℕ0 → (2 ≤ (♯‘𝑃) → 0 ≤ ((♯‘𝑃) − 2)))
61 nn0z 11584 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ)
62 2z 11593 . . . . . . . . . . . . . 14 2 ∈ ℤ
6362a1i 11 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℤ)
6461, 63zsubcld 11671 . . . . . . . . . . . 12 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ∈ ℤ)
6560, 64jctild 567 . . . . . . . . . . 11 ((♯‘𝑃) ∈ ℕ0 → (2 ≤ (♯‘𝑃) → (((♯‘𝑃) − 2) ∈ ℤ ∧ 0 ≤ ((♯‘𝑃) − 2))))
661, 65syl 17 . . . . . . . . . 10 (𝑃 ∈ Word 𝑉 → (2 ≤ (♯‘𝑃) → (((♯‘𝑃) − 2) ∈ ℤ ∧ 0 ≤ ((♯‘𝑃) − 2))))
6766imp 444 . . . . . . . . 9 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((♯‘𝑃) − 2) ∈ ℤ ∧ 0 ≤ ((♯‘𝑃) − 2)))
68 elnn0z 11574 . . . . . . . . 9 (((♯‘𝑃) − 2) ∈ ℕ0 ↔ (((♯‘𝑃) − 2) ∈ ℤ ∧ 0 ≤ ((♯‘𝑃) − 2)))
6967, 68sylibr 224 . . . . . . . 8 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ ℕ0)
70 elnn0uz 11910 . . . . . . . 8 (((♯‘𝑃) − 2) ∈ ℕ0 ↔ ((♯‘𝑃) − 2) ∈ (ℤ‘0))
7169, 70sylib 208 . . . . . . 7 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ (ℤ‘0))
72 fzosplitsn 12762 . . . . . . 7 (((♯‘𝑃) − 2) ∈ (ℤ‘0) → (0..^(((♯‘𝑃) − 2) + 1)) = ((0..^((♯‘𝑃) − 2)) ∪ {((♯‘𝑃) − 2)}))
7371, 72syl 17 . . . . . 6 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (0..^(((♯‘𝑃) − 2) + 1)) = ((0..^((♯‘𝑃) − 2)) ∪ {((♯‘𝑃) − 2)}))
7455, 73eqtrd 2786 . . . . 5 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (0..^((♯‘𝑃) − 1)) = ((0..^((♯‘𝑃) − 2)) ∪ {((♯‘𝑃) − 2)}))
7574adantr 472 . . . 4 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → (0..^((♯‘𝑃) − 1)) = ((0..^((♯‘𝑃) − 2)) ∪ {((♯‘𝑃) − 2)}))
7675raleqdv 3275 . . 3 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ ∀𝑖 ∈ ((0..^((♯‘𝑃) − 2)) ∪ {((♯‘𝑃) − 2)}){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
7749, 76mpbird 247 . 2 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸)
7877ex 449 1 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1624  wcel 2131  wral 3042  Vcvv 3332  cun 3705  {csn 4313  {cpr 4315   class class class wbr 4796  ran crn 5259  cfv 6041  (class class class)co 6805  cc 10118  cr 10119  0cc0 10120  1c1 10121   + caddc 10123  cle 10259  cmin 10450  2c2 11254  0cn0 11476  cz 11561  cuz 11871  ..^cfzo 12651  chash 13303  Word cword 13469   lastS clsw 13470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-card 8947  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-n0 11477  df-z 11562  df-uz 11872  df-fz 12512  df-fzo 12652  df-hash 13304  df-word 13477  df-lsw 13478
This theorem is referenced by:  clwlkclwwlklem2a  27113
  Copyright terms: Public domain W3C validator