Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkcompim Structured version   Visualization version   GIF version

Theorem clwlkcompim 26562
 Description: Implications for the properties of the components of a closed walk. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 17-Feb-2021.)
Hypotheses
Ref Expression
isclwlke.v 𝑉 = (Vtx‘𝐺)
isclwlke.i 𝐼 = (iEdg‘𝐺)
clwlkcomp.1 𝐹 = (1st𝑊)
clwlkcomp.2 𝑃 = (2nd𝑊)
Assertion
Ref Expression
clwlkcompim (𝑊 ∈ (ClWalks‘𝐺) → ((𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ∧ (𝑃‘0) = (𝑃‘(#‘𝐹)))))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑃,𝑘   𝑘,𝐼   𝑘,𝑉
Allowed substitution hint:   𝑊(𝑘)

Proof of Theorem clwlkcompim
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6183 . . . 4 (𝑊 ∈ (ClWalks‘𝐺) → 𝐺 ∈ V)
2 clwlks 26554 . . . . . . 7 (ClWalks‘𝐺) = {⟨𝑓, 𝑔⟩ ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(#‘𝑓)))}
32a1i 11 . . . . . 6 (𝐺 ∈ V → (ClWalks‘𝐺) = {⟨𝑓, 𝑔⟩ ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(#‘𝑓)))})
43eleq2d 2684 . . . . 5 (𝐺 ∈ V → (𝑊 ∈ (ClWalks‘𝐺) ↔ 𝑊 ∈ {⟨𝑓, 𝑔⟩ ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(#‘𝑓)))}))
5 elopaelxp 5157 . . . . . . 7 (𝑊 ∈ {⟨𝑓, 𝑔⟩ ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(#‘𝑓)))} → 𝑊 ∈ (V × V))
65anim2i 592 . . . . . 6 ((𝐺 ∈ V ∧ 𝑊 ∈ {⟨𝑓, 𝑔⟩ ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(#‘𝑓)))}) → (𝐺 ∈ V ∧ 𝑊 ∈ (V × V)))
76ex 450 . . . . 5 (𝐺 ∈ V → (𝑊 ∈ {⟨𝑓, 𝑔⟩ ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(#‘𝑓)))} → (𝐺 ∈ V ∧ 𝑊 ∈ (V × V))))
84, 7sylbid 230 . . . 4 (𝐺 ∈ V → (𝑊 ∈ (ClWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ (V × V))))
91, 8mpcom 38 . . 3 (𝑊 ∈ (ClWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ (V × V)))
10 isclwlke.v . . . 4 𝑉 = (Vtx‘𝐺)
11 isclwlke.i . . . 4 𝐼 = (iEdg‘𝐺)
12 clwlkcomp.1 . . . 4 𝐹 = (1st𝑊)
13 clwlkcomp.2 . . . 4 𝑃 = (2nd𝑊)
1410, 11, 12, 13clwlkcomp 26561 . . 3 ((𝐺 ∈ V ∧ 𝑊 ∈ (V × V)) → (𝑊 ∈ (ClWalks‘𝐺) ↔ ((𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))))))
159, 14syl 17 . 2 (𝑊 ∈ (ClWalks‘𝐺) → (𝑊 ∈ (ClWalks‘𝐺) ↔ ((𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))))))
1615ibi 256 1 (𝑊 ∈ (ClWalks‘𝐺) → ((𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ∧ (𝑃‘0) = (𝑃‘(#‘𝐹)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384  if-wif 1011   = wceq 1480   ∈ wcel 1987  ∀wral 2907  Vcvv 3189   ⊆ wss 3559  {csn 4153  {cpr 4155   class class class wbr 4618  {copab 4677   × cxp 5077  dom cdm 5079  ⟶wf 5848  ‘cfv 5852  (class class class)co 6610  1st c1st 7118  2nd c2nd 7119  0cc0 9888  1c1 9889   + caddc 9891  ...cfz 12276  ..^cfzo 12414  #chash 13065  Word cword 13238  Vtxcvtx 25791  iEdgciedg 25792  Walkscwlks 26379  ClWalkscclwlks 26552 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1012  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-er 7694  df-map 7811  df-pm 7812  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-n0 11245  df-z 11330  df-uz 11640  df-fz 12277  df-fzo 12415  df-hash 13066  df-word 13246  df-wlks 26382  df-clwlks 26553 This theorem is referenced by:  upgrclwlkcompim  26563  clwlksfclwwlk2wrd  26841  clwlksfclwwlk1hash  26843  clwlksf1clwwlklem0  26847
 Copyright terms: Public domain W3C validator