MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlksf1clwwlklem Structured version   Visualization version   GIF version

Theorem clwlksf1clwwlklem 26834
Description: Lemma for clwlksf1clwwlk 26835. (Contributed by Alexander van der Vekens, 5-Jul-2018.) (Revised by AV, 3-May-2021.)
Hypotheses
Ref Expression
clwlksfclwwlk.1 𝐴 = (1st𝑐)
clwlksfclwwlk.2 𝐵 = (2nd𝑐)
clwlksfclwwlk.c 𝐶 = {𝑐 ∈ (ClWalks‘𝐺) ∣ (#‘𝐴) = 𝑁}
clwlksfclwwlk.f 𝐹 = (𝑐𝐶 ↦ (𝐵 substr ⟨0, (#‘𝐴)⟩))
Assertion
Ref Expression
clwlksf1clwwlklem ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → (((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩) → ∀𝑦 ∈ (0...𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦)))
Distinct variable groups:   𝐺,𝑐   𝑁,𝑐   𝑊,𝑐   𝐶,𝑐   𝐹,𝑐   𝑦,𝐺   𝑦,𝑁   𝑈,𝑐,𝑦   𝑦,𝑊
Allowed substitution hints:   𝐴(𝑦,𝑐)   𝐵(𝑦,𝑐)   𝐶(𝑦)   𝐹(𝑦)

Proof of Theorem clwlksf1clwwlklem
StepHypRef Expression
1 clwlksfclwwlk.1 . . . . . . . . . . . 12 𝐴 = (1st𝑐)
2 clwlksfclwwlk.2 . . . . . . . . . . . 12 𝐵 = (2nd𝑐)
3 clwlksfclwwlk.c . . . . . . . . . . . 12 𝐶 = {𝑐 ∈ (ClWalks‘𝐺) ∣ (#‘𝐴) = 𝑁}
4 clwlksfclwwlk.f . . . . . . . . . . . 12 𝐹 = (𝑐𝐶 ↦ (𝐵 substr ⟨0, (#‘𝐴)⟩))
51, 2, 3, 4clwlksf1clwwlklem3 26833 . . . . . . . . . . 11 (𝑊𝐶 → (2nd𝑊) ∈ Word (Vtx‘𝐺))
61, 2, 3, 4clwlksf1clwwlklem3 26833 . . . . . . . . . . 11 (𝑈𝐶 → (2nd𝑈) ∈ Word (Vtx‘𝐺))
75, 6anim12ci 590 . . . . . . . . . 10 ((𝑊𝐶𝑈𝐶) → ((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)))
87adantr 481 . . . . . . . . 9 (((𝑊𝐶𝑈𝐶) ∧ 𝑁 ∈ ℕ) → ((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)))
9 nnnn0 11243 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
109adantl 482 . . . . . . . . . 10 (((𝑊𝐶𝑈𝐶) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
111, 2, 3, 4clwlksf1clwwlklem1 26831 . . . . . . . . . . . 12 (𝑈𝐶𝑁 ≤ (#‘(2nd𝑈)))
1211adantl 482 . . . . . . . . . . 11 ((𝑊𝐶𝑈𝐶) → 𝑁 ≤ (#‘(2nd𝑈)))
1312adantr 481 . . . . . . . . . 10 (((𝑊𝐶𝑈𝐶) ∧ 𝑁 ∈ ℕ) → 𝑁 ≤ (#‘(2nd𝑈)))
141, 2, 3, 4clwlksf1clwwlklem1 26831 . . . . . . . . . . . 12 (𝑊𝐶𝑁 ≤ (#‘(2nd𝑊)))
1514adantr 481 . . . . . . . . . . 11 ((𝑊𝐶𝑈𝐶) → 𝑁 ≤ (#‘(2nd𝑊)))
1615adantr 481 . . . . . . . . . 10 (((𝑊𝐶𝑈𝐶) ∧ 𝑁 ∈ ℕ) → 𝑁 ≤ (#‘(2nd𝑊)))
1710, 13, 163jca 1240 . . . . . . . . 9 (((𝑊𝐶𝑈𝐶) ∧ 𝑁 ∈ ℕ) → (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊))))
188, 17jca 554 . . . . . . . 8 (((𝑊𝐶𝑈𝐶) ∧ 𝑁 ∈ ℕ) → (((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))))
1918exp31 629 . . . . . . 7 (𝑊𝐶 → (𝑈𝐶 → (𝑁 ∈ ℕ → (((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))))))
20193imp31 1255 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → (((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))))
2120adantr 481 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))))
221, 2, 3, 4clwlksfclwwlk1hashn 26825 . . . . . . . . . 10 (𝑈𝐶 → (#‘(1st𝑈)) = 𝑁)
23223ad2ant2 1081 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → (#‘(1st𝑈)) = 𝑁)
2423opeq2d 4377 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → ⟨0, (#‘(1st𝑈))⟩ = ⟨0, 𝑁⟩)
2524oveq2d 6620 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑈) substr ⟨0, 𝑁⟩))
261, 2, 3, 4clwlksfclwwlk1hashn 26825 . . . . . . . . . 10 (𝑊𝐶 → (#‘(1st𝑊)) = 𝑁)
27263ad2ant3 1082 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → (#‘(1st𝑊)) = 𝑁)
2827opeq2d 4377 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → ⟨0, (#‘(1st𝑊))⟩ = ⟨0, 𝑁⟩)
2928oveq2d 6620 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩) = ((2nd𝑊) substr ⟨0, 𝑁⟩))
3025, 29eqeq12d 2636 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → (((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩) ↔ ((2nd𝑈) substr ⟨0, 𝑁⟩) = ((2nd𝑊) substr ⟨0, 𝑁⟩)))
3130biimpa 501 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → ((2nd𝑈) substr ⟨0, 𝑁⟩) = ((2nd𝑊) substr ⟨0, 𝑁⟩))
32 simpl 473 . . . . . . 7 ((((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))) → ((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)))
33 id 22 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
3433, 33jca 554 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ0𝑁 ∈ ℕ0))
35343ad2ant1 1080 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊))) → (𝑁 ∈ ℕ0𝑁 ∈ ℕ0))
3635adantl 482 . . . . . . 7 ((((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))) → (𝑁 ∈ ℕ0𝑁 ∈ ℕ0))
37 3simpc 1058 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊))) → (𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊))))
3837adantl 482 . . . . . . 7 ((((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))) → (𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊))))
39 swrdeq 13382 . . . . . . 7 ((((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))) → (((2nd𝑈) substr ⟨0, 𝑁⟩) = ((2nd𝑊) substr ⟨0, 𝑁⟩) ↔ (𝑁 = 𝑁 ∧ ∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦))))
4032, 36, 38, 39syl3anc 1323 . . . . . 6 ((((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))) → (((2nd𝑈) substr ⟨0, 𝑁⟩) = ((2nd𝑊) substr ⟨0, 𝑁⟩) ↔ (𝑁 = 𝑁 ∧ ∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦))))
41 simpr 477 . . . . . 6 ((𝑁 = 𝑁 ∧ ∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦)) → ∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦))
4240, 41syl6bi 243 . . . . 5 ((((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))) → (((2nd𝑈) substr ⟨0, 𝑁⟩) = ((2nd𝑊) substr ⟨0, 𝑁⟩) → ∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦)))
4321, 31, 42sylc 65 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → ∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦))
44 lbfzo0 12448 . . . . . . . . 9 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
4544biimpri 218 . . . . . . . 8 (𝑁 ∈ ℕ → 0 ∈ (0..^𝑁))
46453ad2ant1 1080 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → 0 ∈ (0..^𝑁))
4746adantr 481 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → 0 ∈ (0..^𝑁))
48 fveq2 6148 . . . . . . . 8 (𝑦 = 0 → ((2nd𝑈)‘𝑦) = ((2nd𝑈)‘0))
49 fveq2 6148 . . . . . . . 8 (𝑦 = 0 → ((2nd𝑊)‘𝑦) = ((2nd𝑊)‘0))
5048, 49eqeq12d 2636 . . . . . . 7 (𝑦 = 0 → (((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ↔ ((2nd𝑈)‘0) = ((2nd𝑊)‘0)))
5150rspcv 3291 . . . . . 6 (0 ∈ (0..^𝑁) → (∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) → ((2nd𝑈)‘0) = ((2nd𝑊)‘0)))
5247, 51syl 17 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) → ((2nd𝑈)‘0) = ((2nd𝑊)‘0)))
531, 2, 3, 4clwlksf1clwwlklem2 26832 . . . . . . . 8 (𝑈𝐶 → ((2nd𝑈)‘0) = ((2nd𝑈)‘𝑁))
54533ad2ant2 1081 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → ((2nd𝑈)‘0) = ((2nd𝑈)‘𝑁))
5554adantr 481 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → ((2nd𝑈)‘0) = ((2nd𝑈)‘𝑁))
561, 2, 3, 4clwlksf1clwwlklem2 26832 . . . . . . . 8 (𝑊𝐶 → ((2nd𝑊)‘0) = ((2nd𝑊)‘𝑁))
57563ad2ant3 1082 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → ((2nd𝑊)‘0) = ((2nd𝑊)‘𝑁))
5857adantr 481 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → ((2nd𝑊)‘0) = ((2nd𝑊)‘𝑁))
5955, 58eqeq12d 2636 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (((2nd𝑈)‘0) = ((2nd𝑊)‘0) ↔ ((2nd𝑈)‘𝑁) = ((2nd𝑊)‘𝑁)))
6052, 59sylibd 229 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) → ((2nd𝑈)‘𝑁) = ((2nd𝑊)‘𝑁)))
6143, 60jcai 558 . . 3 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ∧ ((2nd𝑈)‘𝑁) = ((2nd𝑊)‘𝑁)))
62 elnn0uz 11669 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
639, 62sylib 208 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘0))
64633ad2ant1 1080 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → 𝑁 ∈ (ℤ‘0))
6564adantr 481 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → 𝑁 ∈ (ℤ‘0))
66 fzisfzounsn 12520 . . . . . 6 (𝑁 ∈ (ℤ‘0) → (0...𝑁) = ((0..^𝑁) ∪ {𝑁}))
6765, 66syl 17 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (0...𝑁) = ((0..^𝑁) ∪ {𝑁}))
6867raleqdv 3133 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (∀𝑦 ∈ (0...𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ↔ ∀𝑦 ∈ ((0..^𝑁) ∪ {𝑁})((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦)))
69 simpl1 1062 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → 𝑁 ∈ ℕ)
70 fveq2 6148 . . . . . . 7 (𝑦 = 𝑁 → ((2nd𝑈)‘𝑦) = ((2nd𝑈)‘𝑁))
71 fveq2 6148 . . . . . . 7 (𝑦 = 𝑁 → ((2nd𝑊)‘𝑦) = ((2nd𝑊)‘𝑁))
7270, 71eqeq12d 2636 . . . . . 6 (𝑦 = 𝑁 → (((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ↔ ((2nd𝑈)‘𝑁) = ((2nd𝑊)‘𝑁)))
7372ralunsn 4390 . . . . 5 (𝑁 ∈ ℕ → (∀𝑦 ∈ ((0..^𝑁) ∪ {𝑁})((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ↔ (∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ∧ ((2nd𝑈)‘𝑁) = ((2nd𝑊)‘𝑁))))
7469, 73syl 17 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (∀𝑦 ∈ ((0..^𝑁) ∪ {𝑁})((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ↔ (∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ∧ ((2nd𝑈)‘𝑁) = ((2nd𝑊)‘𝑁))))
7568, 74bitrd 268 . . 3 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (∀𝑦 ∈ (0...𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ↔ (∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ∧ ((2nd𝑈)‘𝑁) = ((2nd𝑊)‘𝑁))))
7661, 75mpbird 247 . 2 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → ∀𝑦 ∈ (0...𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦))
7776ex 450 1 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → (((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩) → ∀𝑦 ∈ (0...𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  {crab 2911  cun 3553  {csn 4148  cop 4154   class class class wbr 4613  cmpt 4673  cfv 5847  (class class class)co 6604  1st c1st 7111  2nd c2nd 7112  0cc0 9880  cle 10019  cn 10964  0cn0 11236  cuz 11631  ...cfz 12268  ..^cfzo 12406  #chash 13057  Word cword 13230   substr csubstr 13234  Vtxcvtx 25774  ClWalkscclwlks 26535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1012  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-hash 13058  df-word 13238  df-substr 13242  df-wlks 26365  df-clwlks 26536
This theorem is referenced by:  clwlksf1clwwlk  26835
  Copyright terms: Public domain W3C validator