MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwisshclwwsn Structured version   Visualization version   GIF version

Theorem clwwisshclwwsn 27110
Description: Cyclically shifting a closed walk as word results in a closed walk as word (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Jun-2018.) (Revised by AV, 29-Apr-2021.)
Assertion
Ref Expression
clwwisshclwwsn ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))

Proof of Theorem clwwisshclwwsn
StepHypRef Expression
1 oveq2 6809 . . . 4 (𝑁 = (♯‘𝑊) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (♯‘𝑊)))
2 eqid 2748 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
32clwwlkbp 27079 . . . . . . 7 (𝑊 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅))
43simp2d 1135 . . . . . 6 (𝑊 ∈ (ClWWalks‘𝐺) → 𝑊 ∈ Word (Vtx‘𝐺))
5 cshwn 13714 . . . . . 6 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 cyclShift (♯‘𝑊)) = 𝑊)
64, 5syl 17 . . . . 5 (𝑊 ∈ (ClWWalks‘𝐺) → (𝑊 cyclShift (♯‘𝑊)) = 𝑊)
76adantr 472 . . . 4 ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 cyclShift (♯‘𝑊)) = 𝑊)
81, 7sylan9eq 2802 . . 3 ((𝑁 = (♯‘𝑊) ∧ (𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) → (𝑊 cyclShift 𝑁) = 𝑊)
9 simprl 811 . . 3 ((𝑁 = (♯‘𝑊) ∧ (𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) → 𝑊 ∈ (ClWWalks‘𝐺))
108, 9eqeltrd 2827 . 2 ((𝑁 = (♯‘𝑊) ∧ (𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))
11 simprl 811 . . 3 ((¬ 𝑁 = (♯‘𝑊) ∧ (𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) → 𝑊 ∈ (ClWWalks‘𝐺))
12 df-ne 2921 . . . . . 6 (𝑁 ≠ (♯‘𝑊) ↔ ¬ 𝑁 = (♯‘𝑊))
13 fzofzim 12680 . . . . . . 7 ((𝑁 ≠ (♯‘𝑊) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → 𝑁 ∈ (0..^(♯‘𝑊)))
1413expcom 450 . . . . . 6 (𝑁 ∈ (0...(♯‘𝑊)) → (𝑁 ≠ (♯‘𝑊) → 𝑁 ∈ (0..^(♯‘𝑊))))
1512, 14syl5bir 233 . . . . 5 (𝑁 ∈ (0...(♯‘𝑊)) → (¬ 𝑁 = (♯‘𝑊) → 𝑁 ∈ (0..^(♯‘𝑊))))
1615adantl 473 . . . 4 ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (¬ 𝑁 = (♯‘𝑊) → 𝑁 ∈ (0..^(♯‘𝑊))))
1716impcom 445 . . 3 ((¬ 𝑁 = (♯‘𝑊) ∧ (𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) → 𝑁 ∈ (0..^(♯‘𝑊)))
18 clwwisshclwws 27109 . . 3 ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))
1911, 17, 18syl2anc 696 . 2 ((¬ 𝑁 = (♯‘𝑊) ∧ (𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))
2010, 19pm2.61ian 866 1 ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1620  wcel 2127  wne 2920  Vcvv 3328  c0 4046  cfv 6037  (class class class)co 6801  0cc0 10099  ...cfz 12490  ..^cfzo 12630  chash 13282  Word cword 13448   cyclShift ccsh 13705  Vtxcvtx 26044  ClWWalkscclwwlk 27075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-pre-sup 10177
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7899  df-map 8013  df-pm 8014  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8501  df-inf 8502  df-card 8926  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-div 10848  df-nn 11184  df-2 11242  df-n0 11456  df-z 11541  df-uz 11851  df-rp 11997  df-ico 12345  df-fz 12491  df-fzo 12631  df-fl 12758  df-mod 12834  df-hash 13283  df-word 13456  df-lsw 13457  df-concat 13458  df-substr 13460  df-csh 13706  df-clwwlk 27076
This theorem is referenced by:  clwwnisshclwwsn  27161
  Copyright terms: Public domain W3C validator