Proof of Theorem clwwlkccatlem
Step | Hyp | Ref
| Expression |
1 | | simpl 474 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Word (Vtx‘𝐺)) |
2 | 1 | ad2antrr 764 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^((♯‘𝐴) − 1))) → 𝐴 ∈ Word (Vtx‘𝐺)) |
3 | | simplr 809 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^((♯‘𝐴) − 1))) → 𝐵 ∈ Word (Vtx‘𝐺)) |
4 | | lencl 13510 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 ∈ Word (Vtx‘𝐺) → (♯‘𝐴) ∈
ℕ0) |
5 | 4 | nn0zd 11672 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 ∈ Word (Vtx‘𝐺) → (♯‘𝐴) ∈
ℤ) |
6 | | fzossrbm1 12691 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((♯‘𝐴)
∈ ℤ → (0..^((♯‘𝐴) − 1)) ⊆
(0..^(♯‘𝐴))) |
7 | 5, 6 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ∈ Word (Vtx‘𝐺) →
(0..^((♯‘𝐴)
− 1)) ⊆ (0..^(♯‘𝐴))) |
8 | 7 | ad2antrr 764 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) → (0..^((♯‘𝐴) − 1)) ⊆
(0..^(♯‘𝐴))) |
9 | 8 | sselda 3744 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^((♯‘𝐴) − 1))) → 𝑖 ∈
(0..^(♯‘𝐴))) |
10 | | ccatval1 13549 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) → ((𝐴 ++ 𝐵)‘𝑖) = (𝐴‘𝑖)) |
11 | 2, 3, 9, 10 | syl3anc 1477 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^((♯‘𝐴) − 1))) → ((𝐴 ++ 𝐵)‘𝑖) = (𝐴‘𝑖)) |
12 | 5 | ad2antrr 764 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) → (♯‘𝐴) ∈ ℤ) |
13 | | elfzom1elp1fzo 12729 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((♯‘𝐴)
∈ ℤ ∧ 𝑖
∈ (0..^((♯‘𝐴) − 1))) → (𝑖 + 1) ∈ (0..^(♯‘𝐴))) |
14 | 12, 13 | sylan 489 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^((♯‘𝐴) − 1))) → (𝑖 + 1) ∈
(0..^(♯‘𝐴))) |
15 | | ccatval1 13549 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ Word (Vtx‘𝐺) ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐴))) → ((𝐴 ++ 𝐵)‘(𝑖 + 1)) = (𝐴‘(𝑖 + 1))) |
16 | 2, 3, 14, 15 | syl3anc 1477 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^((♯‘𝐴) − 1))) → ((𝐴 ++ 𝐵)‘(𝑖 + 1)) = (𝐴‘(𝑖 + 1))) |
17 | 11, 16 | preq12d 4420 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^((♯‘𝐴) − 1))) → {((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} = {(𝐴‘𝑖), (𝐴‘(𝑖 + 1))}) |
18 | 17 | eqcomd 2766 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^((♯‘𝐴) − 1))) → {(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} = {((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))}) |
19 | 18 | eleq1d 2824 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^((♯‘𝐴) − 1))) → ({(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
20 | 19 | biimpd 219 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^((♯‘𝐴) − 1))) → ({(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
21 | 20 | ralimdva 3100 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) → (∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
22 | 21 | impancom 455 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝐵 ∈ Word (Vtx‘𝐺) → ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
23 | 22 | 3adant3 1127 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) → (𝐵 ∈ Word (Vtx‘𝐺) → ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
24 | 23 | com12 32 |
. . . . . . . . 9
⊢ (𝐵 ∈ Word (Vtx‘𝐺) → (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) → ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
25 | 24 | adantr 472 |
. . . . . . . 8
⊢ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) → (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) → ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
26 | 25 | 3ad2ant1 1128 |
. . . . . . 7
⊢ (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) → (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) → ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
27 | 26 | impcom 445 |
. . . . . 6
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺))) → ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) |
28 | 27 | 3adant3 1127 |
. . . . 5
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) |
29 | 1 | adantl 473 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → 𝐴 ∈ Word (Vtx‘𝐺)) |
30 | | simpl 474 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) → 𝐵 ∈ Word (Vtx‘𝐺)) |
31 | 30 | adantr 472 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → 𝐵 ∈ Word (Vtx‘𝐺)) |
32 | | simprr 813 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → 𝐴 ≠ ∅) |
33 | 29, 31, 32 | 3jca 1123 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) |
34 | 33 | adantr 472 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) |
35 | | ccatval1lsw 13556 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → ((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)) = (lastS‘𝐴)) |
36 | 34, 35 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → ((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)) = (lastS‘𝐴)) |
37 | 36 | eqcomd 2766 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → (lastS‘𝐴) = ((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1))) |
38 | | simpr 479 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) = (𝐵‘0)) |
39 | 4 | nn0cnd 11545 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 ∈ Word (Vtx‘𝐺) → (♯‘𝐴) ∈
ℂ) |
40 | | npcan1 10647 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((♯‘𝐴)
∈ ℂ → (((♯‘𝐴) − 1) + 1) = (♯‘𝐴)) |
41 | 39, 40 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ∈ Word (Vtx‘𝐺) → (((♯‘𝐴) − 1) + 1) =
(♯‘𝐴)) |
42 | 41 | ad2antrl 766 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) →
(((♯‘𝐴) −
1) + 1) = (♯‘𝐴)) |
43 | 42 | fveq2d 6356 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1)) = ((𝐴 ++ 𝐵)‘(♯‘𝐴))) |
44 | | simplr 809 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → 𝐵 ≠ ∅) |
45 | | ccatval21sw 13557 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) → ((𝐴 ++ 𝐵)‘(♯‘𝐴)) = (𝐵‘0)) |
46 | 29, 31, 44, 45 | syl3anc 1477 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → ((𝐴 ++ 𝐵)‘(♯‘𝐴)) = (𝐵‘0)) |
47 | 43, 46 | eqtr2d 2795 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → (𝐵‘0) = ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1))) |
48 | 47 | adantr 472 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐵‘0) = ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1))) |
49 | 38, 48 | eqtrd 2794 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) = ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1))) |
50 | 37, 49 | preq12d 4420 |
. . . . . . . . . . . . . 14
⊢ ((((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → {(lastS‘𝐴), (𝐴‘0)} = {((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)), ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1))}) |
51 | 50 | eleq1d 2824 |
. . . . . . . . . . . . 13
⊢ ((((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → ({(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺) ↔ {((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)), ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1))} ∈ (Edg‘𝐺))) |
52 | 51 | biimpd 219 |
. . . . . . . . . . . 12
⊢ ((((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → ({(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺) → {((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)), ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1))} ∈ (Edg‘𝐺))) |
53 | 52 | ex 449 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → ((𝐴‘0) = (𝐵‘0) → ({(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺) → {((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)), ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1))} ∈ (Edg‘𝐺)))) |
54 | 53 | com23 86 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → ({(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺) → ((𝐴‘0) = (𝐵‘0) → {((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)), ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1))} ∈ (Edg‘𝐺)))) |
55 | 54 | expimpd 630 |
. . . . . . . . 9
⊢ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) → (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) → ((𝐴‘0) = (𝐵‘0) → {((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)), ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1))} ∈ (Edg‘𝐺)))) |
56 | 55 | 3ad2ant1 1128 |
. . . . . . . 8
⊢ (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) → (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) → ((𝐴‘0) = (𝐵‘0) → {((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)), ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1))} ∈ (Edg‘𝐺)))) |
57 | 56 | com12 32 |
. . . . . . 7
⊢ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) → (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) → ((𝐴‘0) = (𝐵‘0) → {((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)), ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1))} ∈ (Edg‘𝐺)))) |
58 | 57 | 3adant2 1126 |
. . . . . 6
⊢ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) → (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) → ((𝐴‘0) = (𝐵‘0) → {((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)), ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1))} ∈ (Edg‘𝐺)))) |
59 | 58 | 3imp 1102 |
. . . . 5
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → {((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)), ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1))} ∈ (Edg‘𝐺)) |
60 | | ralunb 3937 |
. . . . . 6
⊢
(∀𝑖 ∈
((0..^((♯‘𝐴)
− 1)) ∪ {((♯‘𝐴) − 1)}){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ (∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ ∀𝑖 ∈ {((♯‘𝐴) − 1)} {((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
61 | | ovex 6841 |
. . . . . . . 8
⊢
((♯‘𝐴)
− 1) ∈ V |
62 | | fveq2 6352 |
. . . . . . . . . 10
⊢ (𝑖 = ((♯‘𝐴) − 1) → ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1))) |
63 | | oveq1 6820 |
. . . . . . . . . . 11
⊢ (𝑖 = ((♯‘𝐴) − 1) → (𝑖 + 1) = (((♯‘𝐴) − 1) +
1)) |
64 | 63 | fveq2d 6356 |
. . . . . . . . . 10
⊢ (𝑖 = ((♯‘𝐴) − 1) → ((𝐴 ++ 𝐵)‘(𝑖 + 1)) = ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1))) |
65 | 62, 64 | preq12d 4420 |
. . . . . . . . 9
⊢ (𝑖 = ((♯‘𝐴) − 1) → {((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} = {((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)), ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1))}) |
66 | 65 | eleq1d 2824 |
. . . . . . . 8
⊢ (𝑖 = ((♯‘𝐴) − 1) → ({((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)), ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1))} ∈ (Edg‘𝐺))) |
67 | 61, 66 | ralsn 4366 |
. . . . . . 7
⊢
(∀𝑖 ∈
{((♯‘𝐴) −
1)} {((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)), ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1))} ∈ (Edg‘𝐺)) |
68 | 67 | anbi2i 732 |
. . . . . 6
⊢
((∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ ∀𝑖 ∈ {((♯‘𝐴) − 1)} {((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ (∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)), ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1))} ∈ (Edg‘𝐺))) |
69 | 60, 68 | bitri 264 |
. . . . 5
⊢
(∀𝑖 ∈
((0..^((♯‘𝐴)
− 1)) ∪ {((♯‘𝐴) − 1)}){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ (∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)), ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1))} ∈ (Edg‘𝐺))) |
70 | 28, 59, 69 | sylanbrc 701 |
. . . 4
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → ∀𝑖 ∈ ((0..^((♯‘𝐴) − 1)) ∪
{((♯‘𝐴) −
1)}){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) |
71 | | 0z 11580 |
. . . . . . . 8
⊢ 0 ∈
ℤ |
72 | | lennncl 13511 |
. . . . . . . . 9
⊢ ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → (♯‘𝐴) ∈
ℕ) |
73 | | 0p1e1 11324 |
. . . . . . . . . . . 12
⊢ (0 + 1) =
1 |
74 | 73 | fveq2i 6355 |
. . . . . . . . . . 11
⊢
(ℤ≥‘(0 + 1)) =
(ℤ≥‘1) |
75 | 74 | eleq2i 2831 |
. . . . . . . . . 10
⊢
((♯‘𝐴)
∈ (ℤ≥‘(0 + 1)) ↔ (♯‘𝐴) ∈
(ℤ≥‘1)) |
76 | | elnnuz 11917 |
. . . . . . . . . 10
⊢
((♯‘𝐴)
∈ ℕ ↔ (♯‘𝐴) ∈
(ℤ≥‘1)) |
77 | 75, 76 | bitr4i 267 |
. . . . . . . . 9
⊢
((♯‘𝐴)
∈ (ℤ≥‘(0 + 1)) ↔ (♯‘𝐴) ∈
ℕ) |
78 | 72, 77 | sylibr 224 |
. . . . . . . 8
⊢ ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → (♯‘𝐴) ∈
(ℤ≥‘(0 + 1))) |
79 | | fzosplitsnm1 12737 |
. . . . . . . 8
⊢ ((0
∈ ℤ ∧ (♯‘𝐴) ∈ (ℤ≥‘(0 +
1))) → (0..^(♯‘𝐴)) = ((0..^((♯‘𝐴) − 1)) ∪ {((♯‘𝐴) − 1)})) |
80 | 71, 78, 79 | sylancr 698 |
. . . . . . 7
⊢ ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) →
(0..^(♯‘𝐴)) =
((0..^((♯‘𝐴)
− 1)) ∪ {((♯‘𝐴) − 1)})) |
81 | 80 | raleqdv 3283 |
. . . . . 6
⊢ ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → (∀𝑖 ∈
(0..^(♯‘𝐴)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ ((0..^((♯‘𝐴) − 1)) ∪
{((♯‘𝐴) −
1)}){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
82 | 81 | 3ad2ant1 1128 |
. . . . 5
⊢ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) → (∀𝑖 ∈
(0..^(♯‘𝐴)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ ((0..^((♯‘𝐴) − 1)) ∪
{((♯‘𝐴) −
1)}){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
83 | 82 | 3ad2ant1 1128 |
. . . 4
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → (∀𝑖 ∈
(0..^(♯‘𝐴)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ ((0..^((♯‘𝐴) − 1)) ∪
{((♯‘𝐴) −
1)}){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
84 | 70, 83 | mpbird 247 |
. . 3
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → ∀𝑖 ∈ (0..^(♯‘𝐴)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) |
85 | | lencl 13510 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐵 ∈ Word (Vtx‘𝐺) → (♯‘𝐵) ∈
ℕ0) |
86 | 85 | nn0zd 11672 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐵 ∈ Word (Vtx‘𝐺) → (♯‘𝐵) ∈
ℤ) |
87 | | peano2zm 11612 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((♯‘𝐵)
∈ ℤ → ((♯‘𝐵) − 1) ∈
ℤ) |
88 | 86, 87 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐵 ∈ Word (Vtx‘𝐺) → ((♯‘𝐵) − 1) ∈
ℤ) |
89 | 88 | ad2antrl 766 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) → ((♯‘𝐵) − 1) ∈
ℤ) |
90 | 89 | adantr 472 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → ((♯‘𝐵) − 1) ∈
ℤ) |
91 | 90 | anim1i 593 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈ Word
(Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) →
(((♯‘𝐵) −
1) ∈ ℤ ∧ 𝑖
∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))))) |
92 | 91 | ancomd 466 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈ Word
(Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → (𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))) ∧ ((♯‘𝐵) − 1) ∈
ℤ)) |
93 | | fzosubel3 12723 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))) ∧
((♯‘𝐵) −
1) ∈ ℤ) → (𝑖 − (♯‘𝐴)) ∈ (0..^((♯‘𝐵) − 1))) |
94 | | fveq2 6352 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝑖 − (♯‘𝐴)) → (𝐵‘𝑗) = (𝐵‘(𝑖 − (♯‘𝐴)))) |
95 | | oveq1 6820 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = (𝑖 − (♯‘𝐴)) → (𝑗 + 1) = ((𝑖 − (♯‘𝐴)) + 1)) |
96 | 95 | fveq2d 6356 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝑖 − (♯‘𝐴)) → (𝐵‘(𝑗 + 1)) = (𝐵‘((𝑖 − (♯‘𝐴)) + 1))) |
97 | 94, 96 | preq12d 4420 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = (𝑖 − (♯‘𝐴)) → {(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} = {(𝐵‘(𝑖 − (♯‘𝐴))), (𝐵‘((𝑖 − (♯‘𝐴)) + 1))}) |
98 | 97 | eleq1d 2824 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = (𝑖 − (♯‘𝐴)) → ({(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ↔ {(𝐵‘(𝑖 − (♯‘𝐴))), (𝐵‘((𝑖 − (♯‘𝐴)) + 1))} ∈ (Edg‘𝐺))) |
99 | 98 | rspcv 3445 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 − (♯‘𝐴)) ∈
(0..^((♯‘𝐵)
− 1)) → (∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) → {(𝐵‘(𝑖 − (♯‘𝐴))), (𝐵‘((𝑖 − (♯‘𝐴)) + 1))} ∈ (Edg‘𝐺))) |
100 | 92, 93, 99 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈ Word
(Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → (∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) → {(𝐵‘(𝑖 − (♯‘𝐴))), (𝐵‘((𝑖 − (♯‘𝐴)) + 1))} ∈ (Edg‘𝐺))) |
101 | 1 | ad3antrrr 768 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐴 ∈ Word
(Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → 𝐴 ∈ Word (Vtx‘𝐺)) |
102 | 30 | adantl 473 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) → 𝐵 ∈ Word (Vtx‘𝐺)) |
103 | 102 | ad2antrr 764 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐴 ∈ Word
(Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → 𝐵 ∈ Word (Vtx‘𝐺)) |
104 | 4 | adantr 472 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → (♯‘𝐴) ∈
ℕ0) |
105 | 85 | adantr 472 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) → (♯‘𝐵) ∈
ℕ0) |
106 | | nn0addcl 11520 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((♯‘𝐴)
∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0) →
((♯‘𝐴) +
(♯‘𝐵)) ∈
ℕ0) |
107 | 106 | nn0zd 11672 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((♯‘𝐴)
∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0) →
((♯‘𝐴) +
(♯‘𝐵)) ∈
ℤ) |
108 | 104, 105,
107 | syl2an 495 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) → ((♯‘𝐴) + (♯‘𝐵)) ∈
ℤ) |
109 | | 1nn0 11500 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 1 ∈
ℕ0 |
110 | | eluzmn 11886 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((♯‘𝐴)
+ (♯‘𝐵)) ∈
ℤ ∧ 1 ∈ ℕ0) → ((♯‘𝐴) + (♯‘𝐵)) ∈
(ℤ≥‘(((♯‘𝐴) + (♯‘𝐵)) − 1))) |
111 | 108, 109,
110 | sylancl 697 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) → ((♯‘𝐴) + (♯‘𝐵)) ∈
(ℤ≥‘(((♯‘𝐴) + (♯‘𝐵)) − 1))) |
112 | 39 | ad2antrr 764 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) → (♯‘𝐴) ∈
ℂ) |
113 | 85 | nn0cnd 11545 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐵 ∈ Word (Vtx‘𝐺) → (♯‘𝐵) ∈
ℂ) |
114 | 113 | ad2antrl 766 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) → (♯‘𝐵) ∈
ℂ) |
115 | | 1cnd 10248 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) → 1 ∈
ℂ) |
116 | 112, 114,
115 | addsubassd 10604 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) →
(((♯‘𝐴) +
(♯‘𝐵)) −
1) = ((♯‘𝐴) +
((♯‘𝐵) −
1))) |
117 | 116 | eqcomd 2766 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) → ((♯‘𝐴) + ((♯‘𝐵) − 1)) =
(((♯‘𝐴) +
(♯‘𝐵)) −
1)) |
118 | 117 | fveq2d 6356 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) →
(ℤ≥‘((♯‘𝐴) + ((♯‘𝐵) − 1))) =
(ℤ≥‘(((♯‘𝐴) + (♯‘𝐵)) − 1))) |
119 | 111, 118 | eleqtrrd 2842 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) → ((♯‘𝐴) + (♯‘𝐵)) ∈
(ℤ≥‘((♯‘𝐴) + ((♯‘𝐵) − 1)))) |
120 | | fzoss2 12690 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((♯‘𝐴)
+ (♯‘𝐵)) ∈
(ℤ≥‘((♯‘𝐴) + ((♯‘𝐵) − 1))) → ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))) ⊆
((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) |
121 | 119, 120 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) → ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))) ⊆
((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) |
122 | 121 | adantr 472 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))) ⊆
((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) |
123 | 122 | sselda 3744 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐴 ∈ Word
(Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) |
124 | | ccatval2 13550 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵)‘𝑖) = (𝐵‘(𝑖 − (♯‘𝐴)))) |
125 | 101, 103,
123, 124 | syl3anc 1477 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈ Word
(Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → ((𝐴 ++ 𝐵)‘𝑖) = (𝐵‘(𝑖 − (♯‘𝐴)))) |
126 | 117 | oveq2d 6829 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) → ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))) =
((♯‘𝐴)..^(((♯‘𝐴) + (♯‘𝐵)) − 1))) |
127 | 126 | eleq2d 2825 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) → (𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))) ↔ 𝑖 ∈ ((♯‘𝐴)..^(((♯‘𝐴) + (♯‘𝐵)) − 1)))) |
128 | 127 | adantr 472 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → (𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))) ↔ 𝑖 ∈ ((♯‘𝐴)..^(((♯‘𝐴) + (♯‘𝐵)) − 1)))) |
129 | | eluzmn 11886 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((♯‘𝐴)
∈ ℤ ∧ 1 ∈ ℕ0) → (♯‘𝐴) ∈
(ℤ≥‘((♯‘𝐴) − 1))) |
130 | 5, 109, 129 | sylancl 697 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐴 ∈ Word (Vtx‘𝐺) → (♯‘𝐴) ∈
(ℤ≥‘((♯‘𝐴) − 1))) |
131 | 130 | ad3antrrr 768 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → (♯‘𝐴) ∈
(ℤ≥‘((♯‘𝐴) − 1))) |
132 | | fzoss1 12689 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((♯‘𝐴)
∈ (ℤ≥‘((♯‘𝐴) − 1)) → ((♯‘𝐴)..^(((♯‘𝐴) + (♯‘𝐵)) − 1)) ⊆
(((♯‘𝐴) −
1)..^(((♯‘𝐴) +
(♯‘𝐵)) −
1))) |
133 | 131, 132 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → ((♯‘𝐴)..^(((♯‘𝐴) + (♯‘𝐵)) − 1)) ⊆
(((♯‘𝐴) −
1)..^(((♯‘𝐴) +
(♯‘𝐵)) −
1))) |
134 | 133 | sseld 3743 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → (𝑖 ∈ ((♯‘𝐴)..^(((♯‘𝐴) + (♯‘𝐵)) − 1)) → 𝑖 ∈ (((♯‘𝐴) − 1)..^(((♯‘𝐴) + (♯‘𝐵)) −
1)))) |
135 | 128, 134 | sylbid 230 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → (𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))) → 𝑖 ∈ (((♯‘𝐴) − 1)..^(((♯‘𝐴) + (♯‘𝐵)) −
1)))) |
136 | 135 | imp 444 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐴 ∈ Word
(Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → 𝑖 ∈ (((♯‘𝐴) − 1)..^(((♯‘𝐴) + (♯‘𝐵)) − 1))) |
137 | 5 | adantr 472 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → (♯‘𝐴) ∈
ℤ) |
138 | 86 | adantr 472 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) → (♯‘𝐵) ∈
ℤ) |
139 | 137, 138 | anim12i 591 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) → ((♯‘𝐴) ∈ ℤ ∧
(♯‘𝐵) ∈
ℤ)) |
140 | 139 | adantr 472 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → ((♯‘𝐴) ∈ ℤ ∧
(♯‘𝐵) ∈
ℤ)) |
141 | | simpl 474 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((♯‘𝐴)
∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) →
(♯‘𝐴) ∈
ℤ) |
142 | | zaddcl 11609 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((♯‘𝐴)
∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) →
((♯‘𝐴) +
(♯‘𝐵)) ∈
ℤ) |
143 | 141, 142 | jca 555 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((♯‘𝐴)
∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) →
((♯‘𝐴) ∈
ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ)) |
144 | 140, 143 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → ((♯‘𝐴) ∈ ℤ ∧
((♯‘𝐴) +
(♯‘𝐵)) ∈
ℤ)) |
145 | | elfzoelz 12664 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))) → 𝑖 ∈
ℤ) |
146 | | 1z 11599 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 1 ∈
ℤ |
147 | 145, 146 | jctir 562 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))) → (𝑖 ∈ ℤ ∧ 1 ∈
ℤ)) |
148 | | elfzomelpfzo 12766 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((♯‘𝐴)
∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ) ∧ (𝑖 ∈ ℤ ∧ 1 ∈ ℤ))
→ (𝑖 ∈
(((♯‘𝐴) −
1)..^(((♯‘𝐴) +
(♯‘𝐵)) −
1)) ↔ (𝑖 + 1) ∈
((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))) |
149 | 144, 147,
148 | syl2an 495 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐴 ∈ Word
(Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → (𝑖 ∈ (((♯‘𝐴) − 1)..^(((♯‘𝐴) + (♯‘𝐵)) − 1)) ↔ (𝑖 + 1) ∈
((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))) |
150 | 136, 149 | mpbid 222 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐴 ∈ Word
(Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → (𝑖 + 1) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) |
151 | | ccatval2 13550 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ Word (Vtx‘𝐺) ∧ (𝑖 + 1) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵)‘(𝑖 + 1)) = (𝐵‘((𝑖 + 1) − (♯‘𝐴)))) |
152 | 101, 103,
150, 151 | syl3anc 1477 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐴 ∈ Word
(Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → ((𝐴 ++ 𝐵)‘(𝑖 + 1)) = (𝐵‘((𝑖 + 1) − (♯‘𝐴)))) |
153 | 145 | zcnd 11675 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))) → 𝑖 ∈
ℂ) |
154 | 153 | adantl 473 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐴 ∈ Word
(Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → 𝑖 ∈ ℂ) |
155 | | 1cnd 10248 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐴 ∈ Word
(Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → 1 ∈
ℂ) |
156 | 112 | ad2antrr 764 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐴 ∈ Word
(Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → (♯‘𝐴) ∈
ℂ) |
157 | 154, 155,
156 | addsubd 10605 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐴 ∈ Word
(Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → ((𝑖 + 1) − (♯‘𝐴)) = ((𝑖 − (♯‘𝐴)) + 1)) |
158 | 157 | fveq2d 6356 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐴 ∈ Word
(Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → (𝐵‘((𝑖 + 1) − (♯‘𝐴))) = (𝐵‘((𝑖 − (♯‘𝐴)) + 1))) |
159 | 152, 158 | eqtrd 2794 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈ Word
(Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → ((𝐴 ++ 𝐵)‘(𝑖 + 1)) = (𝐵‘((𝑖 − (♯‘𝐴)) + 1))) |
160 | 125, 159 | preq12d 4420 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈ Word
(Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → {((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} = {(𝐵‘(𝑖 − (♯‘𝐴))), (𝐵‘((𝑖 − (♯‘𝐴)) + 1))}) |
161 | 160 | eleq1d 2824 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈ Word
(Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → ({((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝐵‘(𝑖 − (♯‘𝐴))), (𝐵‘((𝑖 − (♯‘𝐴)) + 1))} ∈ (Edg‘𝐺))) |
162 | 100, 161 | sylibrd 249 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈ Word
(Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → (∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) → {((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
163 | 162 | impancom 455 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈ Word
(Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺)) → (𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))) → {((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
164 | 163 | ralrimiv 3103 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈ Word
(Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺)) → ∀𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) |
165 | 164 | exp31 631 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) → ((𝐴‘0) = (𝐵‘0) → (∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))) |
166 | 165 | expcom 450 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) → ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → ((𝐴‘0) = (𝐵‘0) → (∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))))) |
167 | 166 | com23 86 |
. . . . . . . . 9
⊢ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) → ((𝐴‘0) = (𝐵‘0) → ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → (∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))))) |
168 | 167 | com24 95 |
. . . . . . . 8
⊢ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) → (∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) → ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → ((𝐴‘0) = (𝐵‘0) → ∀𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))))) |
169 | 168 | imp 444 |
. . . . . . 7
⊢ (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺)) → ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → ((𝐴‘0) = (𝐵‘0) → ∀𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))) |
170 | 169 | 3adant3 1127 |
. . . . . 6
⊢ (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) → ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → ((𝐴‘0) = (𝐵‘0) → ∀𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))) |
171 | 170 | com12 32 |
. . . . 5
⊢ ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) → ((𝐴‘0) = (𝐵‘0) → ∀𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))) |
172 | 171 | 3ad2ant1 1128 |
. . . 4
⊢ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) → (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) → ((𝐴‘0) = (𝐵‘0) → ∀𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))) |
173 | 172 | 3imp 1102 |
. . 3
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → ∀𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) |
174 | | ralunb 3937 |
. . 3
⊢
(∀𝑖 ∈
((0..^(♯‘𝐴))
∪ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ (∀𝑖 ∈ (0..^(♯‘𝐴)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ ∀𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
175 | 84, 173, 174 | sylanbrc 701 |
. 2
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → ∀𝑖 ∈ ((0..^(♯‘𝐴)) ∪ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) |
176 | | ccatlen 13547 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵))) |
177 | 1, 30, 176 | syl2anr 496 |
. . . . . . . . . . . . 13
⊢ (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵))) |
178 | 177 | oveq1d 6828 |
. . . . . . . . . . . 12
⊢ (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) →
((♯‘(𝐴 ++ 𝐵)) − 1) =
(((♯‘𝐴) +
(♯‘𝐵)) −
1)) |
179 | 39 | ad2antrl 766 |
. . . . . . . . . . . . 13
⊢ (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → (♯‘𝐴) ∈
ℂ) |
180 | 113 | ad2antrr 764 |
. . . . . . . . . . . . 13
⊢ (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → (♯‘𝐵) ∈
ℂ) |
181 | | 1cnd 10248 |
. . . . . . . . . . . . 13
⊢ (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → 1 ∈
ℂ) |
182 | 179, 180,
181 | addsubassd 10604 |
. . . . . . . . . . . 12
⊢ (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) →
(((♯‘𝐴) +
(♯‘𝐵)) −
1) = ((♯‘𝐴) +
((♯‘𝐵) −
1))) |
183 | 178, 182 | eqtrd 2794 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) →
((♯‘(𝐴 ++ 𝐵)) − 1) =
((♯‘𝐴) +
((♯‘𝐵) −
1))) |
184 | 183 | oveq2d 6829 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) →
(0..^((♯‘(𝐴 ++
𝐵)) − 1)) =
(0..^((♯‘𝐴) +
((♯‘𝐵) −
1)))) |
185 | | elnn0uz 11918 |
. . . . . . . . . . . . 13
⊢
((♯‘𝐴)
∈ ℕ0 ↔ (♯‘𝐴) ∈
(ℤ≥‘0)) |
186 | 4, 185 | sylib 208 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ Word (Vtx‘𝐺) → (♯‘𝐴) ∈
(ℤ≥‘0)) |
187 | 186 | adantr 472 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → (♯‘𝐴) ∈
(ℤ≥‘0)) |
188 | | lennncl 13511 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) → (♯‘𝐵) ∈
ℕ) |
189 | | nnm1nn0 11526 |
. . . . . . . . . . . 12
⊢
((♯‘𝐵)
∈ ℕ → ((♯‘𝐵) − 1) ∈
ℕ0) |
190 | 188, 189 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) → ((♯‘𝐵) − 1) ∈
ℕ0) |
191 | | fzoun 12699 |
. . . . . . . . . . 11
⊢
(((♯‘𝐴)
∈ (ℤ≥‘0) ∧ ((♯‘𝐵) − 1) ∈ ℕ0)
→ (0..^((♯‘𝐴) + ((♯‘𝐵) − 1))) = ((0..^(♯‘𝐴)) ∪ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) −
1))))) |
192 | 187, 190,
191 | syl2anr 496 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) →
(0..^((♯‘𝐴) +
((♯‘𝐵) −
1))) = ((0..^(♯‘𝐴)) ∪ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))))) |
193 | 184, 192 | eqtrd 2794 |
. . . . . . . . 9
⊢ (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) →
(0..^((♯‘(𝐴 ++
𝐵)) − 1)) =
((0..^(♯‘𝐴))
∪ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))))) |
194 | 193 | ex 449 |
. . . . . . . 8
⊢ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) → ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) →
(0..^((♯‘(𝐴 ++
𝐵)) − 1)) =
((0..^(♯‘𝐴))
∪ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))))) |
195 | 194 | 3ad2ant1 1128 |
. . . . . . 7
⊢ (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) → ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) →
(0..^((♯‘(𝐴 ++
𝐵)) − 1)) =
((0..^(♯‘𝐴))
∪ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))))) |
196 | 195 | com12 32 |
. . . . . 6
⊢ ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) →
(0..^((♯‘(𝐴 ++
𝐵)) − 1)) =
((0..^(♯‘𝐴))
∪ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))))) |
197 | 196 | 3ad2ant1 1128 |
. . . . 5
⊢ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) → (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) →
(0..^((♯‘(𝐴 ++
𝐵)) − 1)) =
((0..^(♯‘𝐴))
∪ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))))) |
198 | 197 | imp 444 |
. . . 4
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺))) →
(0..^((♯‘(𝐴 ++
𝐵)) − 1)) =
((0..^(♯‘𝐴))
∪ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))))) |
199 | 198 | 3adant3 1127 |
. . 3
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) →
(0..^((♯‘(𝐴 ++
𝐵)) − 1)) =
((0..^(♯‘𝐴))
∪ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))))) |
200 | 199 | raleqdv 3283 |
. 2
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → (∀𝑖 ∈
(0..^((♯‘(𝐴 ++
𝐵)) − 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ ((0..^(♯‘𝐴)) ∪ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
201 | 175, 200 | mpbird 247 |
1
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → ∀𝑖 ∈ (0..^((♯‘(𝐴 ++ 𝐵)) − 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) |