MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknccat Structured version   Visualization version   GIF version

Theorem clwwlknccat 27836
Description: The concatenation of two words representing closed walks anchored at the same vertex represents a closed walk with a length which is the sum of the lengths of the two walks. The resulting walk is a "double loop", starting at the common vertex, coming back to the common vertex by the first walk, following the second walk and finally coming back to the common vertex again. (Contributed by AV, 24-Apr-2022.)
Assertion
Ref Expression
clwwlknccat ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ 𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴 ++ 𝐵) ∈ ((𝑀 + 𝑁) ClWWalksN 𝐺))

Proof of Theorem clwwlknccat
StepHypRef Expression
1 isclwwlkn 27799 . . 3 (𝐴 ∈ (𝑀 ClWWalksN 𝐺) ↔ (𝐴 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝐴) = 𝑀))
2 isclwwlkn 27799 . . 3 (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝐵 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝐵) = 𝑁))
3 biid 263 . . 3 ((𝐴‘0) = (𝐵‘0) ↔ (𝐴‘0) = (𝐵‘0))
4 simpl 485 . . . 4 ((𝐴 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝐴) = 𝑀) → 𝐴 ∈ (ClWWalks‘𝐺))
5 simpl 485 . . . 4 ((𝐵 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝐵) = 𝑁) → 𝐵 ∈ (ClWWalks‘𝐺))
6 id 22 . . . 4 ((𝐴‘0) = (𝐵‘0) → (𝐴‘0) = (𝐵‘0))
7 clwwlkccat 27762 . . . 4 ((𝐴 ∈ (ClWWalks‘𝐺) ∧ 𝐵 ∈ (ClWWalks‘𝐺) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴 ++ 𝐵) ∈ (ClWWalks‘𝐺))
84, 5, 6, 7syl3an 1156 . . 3 (((𝐴 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝐴) = 𝑀) ∧ (𝐵 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝐵) = 𝑁) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴 ++ 𝐵) ∈ (ClWWalks‘𝐺))
91, 2, 3, 8syl3anb 1157 . 2 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ 𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴 ++ 𝐵) ∈ (ClWWalks‘𝐺))
10 eqid 2821 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
1110clwwlknwrd 27806 . . . . 5 (𝐴 ∈ (𝑀 ClWWalksN 𝐺) → 𝐴 ∈ Word (Vtx‘𝐺))
1210clwwlknwrd 27806 . . . . 5 (𝐵 ∈ (𝑁 ClWWalksN 𝐺) → 𝐵 ∈ Word (Vtx‘𝐺))
13 ccatlen 13921 . . . . 5 ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
1411, 12, 13syl2an 597 . . . 4 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ 𝐵 ∈ (𝑁 ClWWalksN 𝐺)) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
15 clwwlknlen 27804 . . . . 5 (𝐴 ∈ (𝑀 ClWWalksN 𝐺) → (♯‘𝐴) = 𝑀)
16 clwwlknlen 27804 . . . . 5 (𝐵 ∈ (𝑁 ClWWalksN 𝐺) → (♯‘𝐵) = 𝑁)
1715, 16oveqan12d 7169 . . . 4 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ 𝐵 ∈ (𝑁 ClWWalksN 𝐺)) → ((♯‘𝐴) + (♯‘𝐵)) = (𝑀 + 𝑁))
1814, 17eqtrd 2856 . . 3 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ 𝐵 ∈ (𝑁 ClWWalksN 𝐺)) → (♯‘(𝐴 ++ 𝐵)) = (𝑀 + 𝑁))
19183adant3 1128 . 2 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ 𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐴‘0) = (𝐵‘0)) → (♯‘(𝐴 ++ 𝐵)) = (𝑀 + 𝑁))
20 isclwwlkn 27799 . 2 ((𝐴 ++ 𝐵) ∈ ((𝑀 + 𝑁) ClWWalksN 𝐺) ↔ ((𝐴 ++ 𝐵) ∈ (ClWWalks‘𝐺) ∧ (♯‘(𝐴 ++ 𝐵)) = (𝑀 + 𝑁)))
219, 19, 20sylanbrc 585 1 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ 𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴 ++ 𝐵) ∈ ((𝑀 + 𝑁) ClWWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  cfv 6349  (class class class)co 7150  0cc0 10531   + caddc 10534  chash 13684  Word cword 13855   ++ cconcat 13916  Vtxcvtx 26775  ClWWalkscclwwlk 27753   ClWWalksN cclwwlkn 27796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fzo 13028  df-hash 13685  df-word 13856  df-lsw 13909  df-concat 13917  df-clwwlk 27754  df-clwwlkn 27797
This theorem is referenced by:  clwwlknonccat  27869
  Copyright terms: Public domain W3C validator