MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknclwwlkdifnum Structured version   Visualization version   GIF version

Theorem clwwlknclwwlkdifnum 27752
Description: In a 𝐾-regular graph, the size of the set 𝐴 of walks of length 𝑁 starting with a fixed vertex 𝑋 and ending not at this vertex is the difference between 𝐾 to the power of 𝑁 and the size of the set 𝐵 of closed walks of length 𝑁 anchored at this vertex 𝑋. (Contributed by Alexander van der Vekens, 30-Sep-2018.) (Revised by AV, 7-May-2021.) (Revised by AV, 8-Mar-2022.) (Proof shortened by AV, 16-Mar-2022.)
Hypotheses
Ref Expression
clwwlknclwwlkdif.a 𝐴 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}
clwwlknclwwlkdif.b 𝐵 = (𝑋(𝑁 WWalksNOn 𝐺)𝑋)
clwwlknclwwlkdifnum.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
clwwlknclwwlkdifnum (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → (♯‘𝐴) = ((𝐾𝑁) − (♯‘𝐵)))
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑋   𝑤,𝐾   𝑤,𝑉
Allowed substitution hints:   𝐴(𝑤)   𝐵(𝑤)

Proof of Theorem clwwlknclwwlkdifnum
StepHypRef Expression
1 clwwlknclwwlkdif.a . . . . 5 𝐴 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}
2 clwwlknclwwlkdif.b . . . . 5 𝐵 = (𝑋(𝑁 WWalksNOn 𝐺)𝑋)
3 eqid 2821 . . . . 5 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}
41, 2, 3clwwlknclwwlkdif 27751 . . . 4 𝐴 = ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵)
54fveq2i 6668 . . 3 (♯‘𝐴) = (♯‘({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵))
65a1i 11 . 2 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → (♯‘𝐴) = (♯‘({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵)))
7 clwwlknclwwlkdifnum.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
87eleq1i 2903 . . . . . . 7 (𝑉 ∈ Fin ↔ (Vtx‘𝐺) ∈ Fin)
98biimpi 218 . . . . . 6 (𝑉 ∈ Fin → (Vtx‘𝐺) ∈ Fin)
109adantl 484 . . . . 5 ((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) → (Vtx‘𝐺) ∈ Fin)
1110adantr 483 . . . 4 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → (Vtx‘𝐺) ∈ Fin)
12 wwlksnfi 27678 . . . 4 ((Vtx‘𝐺) ∈ Fin → (𝑁 WWalksN 𝐺) ∈ Fin)
13 rabfi 8737 . . . 4 ((𝑁 WWalksN 𝐺) ∈ Fin → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∈ Fin)
1411, 12, 133syl 18 . . 3 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∈ Fin)
157iswwlksnon 27625 . . . . . . . 8 (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤𝑁) = 𝑋)}
16 ancom 463 . . . . . . . . 9 (((𝑤‘0) = 𝑋 ∧ (𝑤𝑁) = 𝑋) ↔ ((𝑤𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋))
1716rabbii 3474 . . . . . . . 8 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤𝑁) = 𝑋)} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋)}
1815, 17eqtri 2844 . . . . . . 7 (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋)}
1918a1i 11 . . . . . 6 ((𝑋𝑉𝑁 ∈ ℕ0) → (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋)})
202, 19syl5eq 2868 . . . . 5 ((𝑋𝑉𝑁 ∈ ℕ0) → 𝐵 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋)})
21 simpr 487 . . . . . . 7 (((𝑤𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋) → (𝑤‘0) = 𝑋)
2221a1i 11 . . . . . 6 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (((𝑤𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋) → (𝑤‘0) = 𝑋))
2322ss2rabi 4053 . . . . 5 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋)} ⊆ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}
2420, 23eqsstrdi 4021 . . . 4 ((𝑋𝑉𝑁 ∈ ℕ0) → 𝐵 ⊆ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
2524adantl 484 . . 3 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → 𝐵 ⊆ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
26 hashssdif 13767 . . 3 (({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∈ Fin ∧ 𝐵 ⊆ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) → (♯‘({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵)) = ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) − (♯‘𝐵)))
2714, 25, 26syl2anc 586 . 2 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → (♯‘({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵)) = ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) − (♯‘𝐵)))
28 simpl 485 . . . . 5 ((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) → 𝐺 RegUSGraph 𝐾)
2928adantr 483 . . . 4 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → 𝐺 RegUSGraph 𝐾)
30 simpr 487 . . . . 5 ((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) → 𝑉 ∈ Fin)
3130adantr 483 . . . 4 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → 𝑉 ∈ Fin)
32 simpl 485 . . . . 5 ((𝑋𝑉𝑁 ∈ ℕ0) → 𝑋𝑉)
3332adantl 484 . . . 4 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → 𝑋𝑉)
34 simpr 487 . . . . 5 ((𝑋𝑉𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
3534adantl 484 . . . 4 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → 𝑁 ∈ ℕ0)
367rusgrnumwwlkg 27749 . . . 4 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ ℕ0)) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) = (𝐾𝑁))
3729, 31, 33, 35, 36syl13anc 1368 . . 3 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) = (𝐾𝑁))
3837oveq1d 7165 . 2 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) − (♯‘𝐵)) = ((𝐾𝑁) − (♯‘𝐵)))
396, 27, 383eqtrd 2860 1 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → (♯‘𝐴) = ((𝐾𝑁) − (♯‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wne 3016  {crab 3142  cdif 3933  wss 3936   class class class wbr 5059  cfv 6350  (class class class)co 7150  Fincfn 8503  0cc0 10531  cmin 10864  0cn0 11891  cexp 13423  chash 13684  lastSclsw 13908  Vtxcvtx 26775   RegUSGraph crusgr 27332   WWalksN cwwlksn 27598   WWalksNOn cwwlksnon 27599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-disj 5025  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-oi 8968  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-rp 12384  df-xadd 12502  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-word 13856  df-lsw 13909  df-concat 13917  df-s1 13944  df-substr 13997  df-pfx 14027  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-vtx 26777  df-iedg 26778  df-edg 26827  df-uhgr 26837  df-ushgr 26838  df-upgr 26861  df-umgr 26862  df-uspgr 26929  df-usgr 26930  df-fusgr 27093  df-nbgr 27109  df-vtxdg 27242  df-rgr 27333  df-rusgr 27334  df-wwlks 27602  df-wwlksn 27603  df-wwlksnon 27604
This theorem is referenced by:  numclwwlkqhash  28148
  Copyright terms: Public domain W3C validator