MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknlbonbgr1 Structured version   Visualization version   GIF version

Theorem clwwlknlbonbgr1 27820
Description: The last but one vertex in a closed walk is a neighbor of the first vertex of the closed walk. (Contributed by AV, 17-Feb-2022.)
Assertion
Ref Expression
clwwlknlbonbgr1 ((𝐺 ∈ USGraph ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑊‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx (𝑊‘0)))

Proof of Theorem clwwlknlbonbgr1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2824 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
31, 2clwwlknp 27818 . . . 4 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))
4 lsw 13919 . . . . . . . . . 10 (𝑊 ∈ Word (Vtx‘𝐺) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
5 fvoveq1 7182 . . . . . . . . . 10 ((♯‘𝑊) = 𝑁 → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘(𝑁 − 1)))
64, 5sylan9eq 2879 . . . . . . . . 9 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) → (lastS‘𝑊) = (𝑊‘(𝑁 − 1)))
76preq1d 4678 . . . . . . . 8 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) → {(lastS‘𝑊), (𝑊‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊‘0)})
87eleq1d 2900 . . . . . . 7 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) ↔ {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺)))
98biimpd 231 . . . . . 6 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺)))
109a1d 25 . . . . 5 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺))))
11103imp 1107 . . . 4 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺))
123, 11syl 17 . . 3 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺))
1312adantl 484 . 2 ((𝐺 ∈ USGraph ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺))
142nbusgreledg 27138 . . 3 (𝐺 ∈ USGraph → ((𝑊‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx (𝑊‘0)) ↔ {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺)))
1514adantr 483 . 2 ((𝐺 ∈ USGraph ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑊‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx (𝑊‘0)) ↔ {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺)))
1613, 15mpbird 259 1 ((𝐺 ∈ USGraph ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑊‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx (𝑊‘0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  {cpr 4572  cfv 6358  (class class class)co 7159  0cc0 10540  1c1 10541   + caddc 10543  cmin 10873  ..^cfzo 13036  chash 13693  Word cword 13864  lastSclsw 13917  Vtxcvtx 26784  Edgcedg 26835  USGraphcusgr 26937   NeighbVtx cnbgr 27117   ClWWalksN cclwwlkn 27805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-dju 9333  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-lsw 13918  df-edg 26836  df-upgr 26870  df-umgr 26871  df-usgr 26939  df-nbgr 27118  df-clwwlk 27763  df-clwwlkn 27806
This theorem is referenced by:  extwwlkfab  28134
  Copyright terms: Public domain W3C validator