MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknon0 Structured version   Visualization version   GIF version

Theorem clwwlknon0 27799
Description: Sufficient conditions for ClWWalksNOn to be empty. (Contributed by AV, 25-Mar-2022.)
Assertion
Ref Expression
clwwlknon0 (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = ∅)

Proof of Theorem clwwlknon0
Dummy variables 𝑛 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7153 . . . 4 (𝑁 = 0 → (𝑋(ClWWalksNOn‘𝐺)𝑁) = (𝑋(ClWWalksNOn‘𝐺)0))
2 clwwlk0on0 27798 . . . 4 (𝑋(ClWWalksNOn‘𝐺)0) = ∅
31, 2syl6eq 2869 . . 3 (𝑁 = 0 → (𝑋(ClWWalksNOn‘𝐺)𝑁) = ∅)
43a1d 25 . 2 (𝑁 = 0 → (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = ∅))
5 simprl 767 . . . . . 6 ((𝑁 ≠ 0 ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0)) → 𝑋 ∈ (Vtx‘𝐺))
6 elnnne0 11899 . . . . . . . . 9 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
76simplbi2 501 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 ≠ 0 → 𝑁 ∈ ℕ))
87adantl 482 . . . . . . 7 ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → (𝑁 ≠ 0 → 𝑁 ∈ ℕ))
98impcom 408 . . . . . 6 ((𝑁 ≠ 0 ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0)) → 𝑁 ∈ ℕ)
105, 9jca 512 . . . . 5 ((𝑁 ≠ 0 ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0)) → (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ))
1110stoic1a 1764 . . . 4 ((𝑁 ≠ 0 ∧ ¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ)) → ¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0))
12 clwwlknonmpo 27795 . . . . 5 (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
1312mpondm0 7375 . . . 4 (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = ∅)
1411, 13syl 17 . . 3 ((𝑁 ≠ 0 ∧ ¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ)) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = ∅)
1514ex 413 . 2 (𝑁 ≠ 0 → (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = ∅))
164, 15pm2.61ine 3097 1 (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1528  wcel 2105  wne 3013  {crab 3139  c0 4288  cfv 6348  (class class class)co 7145  0cc0 10525  cn 11626  0cn0 11885  Vtxcvtx 26708   ClWWalksN cclwwlkn 27729  ClWWalksNOncclwwlknon 27793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-hash 13679  df-word 13850  df-clwwlk 27687  df-clwwlkn 27730  df-clwwlknon 27794
This theorem is referenced by:  clwwlknon1nloop  27805  clwwlknon1le1  27807
  Copyright terms: Public domain W3C validator