MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknonclwlknonf1o Structured version   Visualization version   GIF version

Theorem clwwlknonclwlknonf1o 28144
Description: 𝐹 is a bijection between the two representations of closed walks of a fixed positive length on a fixed vertex. (Contributed by AV, 26-May-2022.) (Proof shortened by AV, 7-Aug-2022.) (Revised by AV, 1-Nov-2022.)
Hypotheses
Ref Expression
clwwlknonclwlknonf1o.v 𝑉 = (Vtx‘𝐺)
clwwlknonclwlknonf1o.w 𝑊 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)}
clwwlknonclwlknonf1o.f 𝐹 = (𝑐𝑊 ↦ ((2nd𝑐) prefix (♯‘(1st𝑐))))
Assertion
Ref Expression
clwwlknonclwlknonf1o ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝐹:𝑊1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁))
Distinct variable groups:   𝐺,𝑐,𝑤   𝑁,𝑐,𝑤   𝑉,𝑐   𝑊,𝑐   𝑋,𝑐,𝑤
Allowed substitution hints:   𝐹(𝑤,𝑐)   𝑉(𝑤)   𝑊(𝑤)

Proof of Theorem clwwlknonclwlknonf1o
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 clwwlknonclwlknonf1o.w . . 3 𝑊 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)}
2 eqid 2824 . . 3 {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} = {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁}
3 clwwlknonclwlknonf1o.f . . 3 𝐹 = (𝑐𝑊 ↦ ((2nd𝑐) prefix (♯‘(1st𝑐))))
4 eqid 2824 . . 3 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} ↦ ((2nd𝑐) prefix (♯‘(1st𝑐)))) = (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} ↦ ((2nd𝑐) prefix (♯‘(1st𝑐))))
5 eqid 2824 . . . . 5 (1st𝑐) = (1st𝑐)
6 eqid 2824 . . . . 5 (2nd𝑐) = (2nd𝑐)
75, 6, 2, 4clwlknf1oclwwlkn 27866 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} ↦ ((2nd𝑐) prefix (♯‘(1st𝑐)))):{𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁}–1-1-onto→(𝑁 ClWWalksN 𝐺))
873adant2 1127 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} ↦ ((2nd𝑐) prefix (♯‘(1st𝑐)))):{𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁}–1-1-onto→(𝑁 ClWWalksN 𝐺))
9 fveq1 6672 . . . . . . 7 (𝑠 = ((2nd𝑐) prefix (♯‘(1st𝑐))) → (𝑠‘0) = (((2nd𝑐) prefix (♯‘(1st𝑐)))‘0))
1093ad2ant3 1131 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} ∧ 𝑠 = ((2nd𝑐) prefix (♯‘(1st𝑐)))) → (𝑠‘0) = (((2nd𝑐) prefix (♯‘(1st𝑐)))‘0))
11 2fveq3 6678 . . . . . . . . . . . 12 (𝑤 = 𝑐 → (♯‘(1st𝑤)) = (♯‘(1st𝑐)))
1211eqeq1d 2826 . . . . . . . . . . 11 (𝑤 = 𝑐 → ((♯‘(1st𝑤)) = 𝑁 ↔ (♯‘(1st𝑐)) = 𝑁))
1312elrab 3683 . . . . . . . . . 10 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} ↔ (𝑐 ∈ (ClWalks‘𝐺) ∧ (♯‘(1st𝑐)) = 𝑁))
14 clwlkwlk 27559 . . . . . . . . . . . 12 (𝑐 ∈ (ClWalks‘𝐺) → 𝑐 ∈ (Walks‘𝐺))
15 wlkcpr 27413 . . . . . . . . . . . . 13 (𝑐 ∈ (Walks‘𝐺) ↔ (1st𝑐)(Walks‘𝐺)(2nd𝑐))
16 eqid 2824 . . . . . . . . . . . . . . . . 17 (Vtx‘𝐺) = (Vtx‘𝐺)
1716wlkpwrd 27402 . . . . . . . . . . . . . . . 16 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (2nd𝑐) ∈ Word (Vtx‘𝐺))
18173ad2ant1 1129 . . . . . . . . . . . . . . 15 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ (♯‘(1st𝑐)) = 𝑁 ∧ (𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (2nd𝑐) ∈ Word (Vtx‘𝐺))
19 elnnuz 12285 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
20 eluzfz2 12918 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘1) → 𝑁 ∈ (1...𝑁))
2119, 20sylbi 219 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑁 ∈ (1...𝑁))
22 fzelp1 12962 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (1...𝑁) → 𝑁 ∈ (1...(𝑁 + 1)))
2321, 22syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ∈ (1...(𝑁 + 1)))
24233ad2ant3 1131 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝑁 ∈ (1...(𝑁 + 1)))
25243ad2ant3 1131 . . . . . . . . . . . . . . . . 17 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ (♯‘(1st𝑐)) = 𝑁 ∧ (𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → 𝑁 ∈ (1...(𝑁 + 1)))
26 id 22 . . . . . . . . . . . . . . . . . . 19 ((♯‘(1st𝑐)) = 𝑁 → (♯‘(1st𝑐)) = 𝑁)
27 oveq1 7166 . . . . . . . . . . . . . . . . . . . 20 ((♯‘(1st𝑐)) = 𝑁 → ((♯‘(1st𝑐)) + 1) = (𝑁 + 1))
2827oveq2d 7175 . . . . . . . . . . . . . . . . . . 19 ((♯‘(1st𝑐)) = 𝑁 → (1...((♯‘(1st𝑐)) + 1)) = (1...(𝑁 + 1)))
2926, 28eleq12d 2910 . . . . . . . . . . . . . . . . . 18 ((♯‘(1st𝑐)) = 𝑁 → ((♯‘(1st𝑐)) ∈ (1...((♯‘(1st𝑐)) + 1)) ↔ 𝑁 ∈ (1...(𝑁 + 1))))
30293ad2ant2 1130 . . . . . . . . . . . . . . . . 17 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ (♯‘(1st𝑐)) = 𝑁 ∧ (𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → ((♯‘(1st𝑐)) ∈ (1...((♯‘(1st𝑐)) + 1)) ↔ 𝑁 ∈ (1...(𝑁 + 1))))
3125, 30mpbird 259 . . . . . . . . . . . . . . . 16 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ (♯‘(1st𝑐)) = 𝑁 ∧ (𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (♯‘(1st𝑐)) ∈ (1...((♯‘(1st𝑐)) + 1)))
32 wlklenvp1 27403 . . . . . . . . . . . . . . . . . . 19 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (♯‘(2nd𝑐)) = ((♯‘(1st𝑐)) + 1))
3332oveq2d 7175 . . . . . . . . . . . . . . . . . 18 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (1...(♯‘(2nd𝑐))) = (1...((♯‘(1st𝑐)) + 1)))
3433eleq2d 2901 . . . . . . . . . . . . . . . . 17 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → ((♯‘(1st𝑐)) ∈ (1...(♯‘(2nd𝑐))) ↔ (♯‘(1st𝑐)) ∈ (1...((♯‘(1st𝑐)) + 1))))
35343ad2ant1 1129 . . . . . . . . . . . . . . . 16 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ (♯‘(1st𝑐)) = 𝑁 ∧ (𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → ((♯‘(1st𝑐)) ∈ (1...(♯‘(2nd𝑐))) ↔ (♯‘(1st𝑐)) ∈ (1...((♯‘(1st𝑐)) + 1))))
3631, 35mpbird 259 . . . . . . . . . . . . . . 15 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ (♯‘(1st𝑐)) = 𝑁 ∧ (𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (♯‘(1st𝑐)) ∈ (1...(♯‘(2nd𝑐))))
3718, 36jca 514 . . . . . . . . . . . . . 14 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ (♯‘(1st𝑐)) = 𝑁 ∧ (𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → ((2nd𝑐) ∈ Word (Vtx‘𝐺) ∧ (♯‘(1st𝑐)) ∈ (1...(♯‘(2nd𝑐)))))
38373exp 1115 . . . . . . . . . . . . 13 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → ((♯‘(1st𝑐)) = 𝑁 → ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((2nd𝑐) ∈ Word (Vtx‘𝐺) ∧ (♯‘(1st𝑐)) ∈ (1...(♯‘(2nd𝑐)))))))
3915, 38sylbi 219 . . . . . . . . . . . 12 (𝑐 ∈ (Walks‘𝐺) → ((♯‘(1st𝑐)) = 𝑁 → ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((2nd𝑐) ∈ Word (Vtx‘𝐺) ∧ (♯‘(1st𝑐)) ∈ (1...(♯‘(2nd𝑐)))))))
4014, 39syl 17 . . . . . . . . . . 11 (𝑐 ∈ (ClWalks‘𝐺) → ((♯‘(1st𝑐)) = 𝑁 → ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((2nd𝑐) ∈ Word (Vtx‘𝐺) ∧ (♯‘(1st𝑐)) ∈ (1...(♯‘(2nd𝑐)))))))
4140imp 409 . . . . . . . . . 10 ((𝑐 ∈ (ClWalks‘𝐺) ∧ (♯‘(1st𝑐)) = 𝑁) → ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((2nd𝑐) ∈ Word (Vtx‘𝐺) ∧ (♯‘(1st𝑐)) ∈ (1...(♯‘(2nd𝑐))))))
4213, 41sylbi 219 . . . . . . . . 9 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} → ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((2nd𝑐) ∈ Word (Vtx‘𝐺) ∧ (♯‘(1st𝑐)) ∈ (1...(♯‘(2nd𝑐))))))
4342impcom 410 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁}) → ((2nd𝑐) ∈ Word (Vtx‘𝐺) ∧ (♯‘(1st𝑐)) ∈ (1...(♯‘(2nd𝑐)))))
44 pfxfv0 14057 . . . . . . . 8 (((2nd𝑐) ∈ Word (Vtx‘𝐺) ∧ (♯‘(1st𝑐)) ∈ (1...(♯‘(2nd𝑐)))) → (((2nd𝑐) prefix (♯‘(1st𝑐)))‘0) = ((2nd𝑐)‘0))
4543, 44syl 17 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁}) → (((2nd𝑐) prefix (♯‘(1st𝑐)))‘0) = ((2nd𝑐)‘0))
46453adant3 1128 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} ∧ 𝑠 = ((2nd𝑐) prefix (♯‘(1st𝑐)))) → (((2nd𝑐) prefix (♯‘(1st𝑐)))‘0) = ((2nd𝑐)‘0))
4710, 46eqtrd 2859 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} ∧ 𝑠 = ((2nd𝑐) prefix (♯‘(1st𝑐)))) → (𝑠‘0) = ((2nd𝑐)‘0))
4847eqeq1d 2826 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} ∧ 𝑠 = ((2nd𝑐) prefix (♯‘(1st𝑐)))) → ((𝑠‘0) = 𝑋 ↔ ((2nd𝑐)‘0) = 𝑋))
49 nfv 1914 . . . . 5 𝑤((2nd𝑐)‘0) = 𝑋
50 fveq2 6673 . . . . . . 7 (𝑤 = 𝑐 → (2nd𝑤) = (2nd𝑐))
5150fveq1d 6675 . . . . . 6 (𝑤 = 𝑐 → ((2nd𝑤)‘0) = ((2nd𝑐)‘0))
5251eqeq1d 2826 . . . . 5 (𝑤 = 𝑐 → (((2nd𝑤)‘0) = 𝑋 ↔ ((2nd𝑐)‘0) = 𝑋))
5349, 52sbiev 2329 . . . 4 ([𝑐 / 𝑤]((2nd𝑤)‘0) = 𝑋 ↔ ((2nd𝑐)‘0) = 𝑋)
5448, 53syl6bbr 291 . . 3 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} ∧ 𝑠 = ((2nd𝑐) prefix (♯‘(1st𝑐)))) → ((𝑠‘0) = 𝑋 ↔ [𝑐 / 𝑤]((2nd𝑤)‘0) = 𝑋))
551, 2, 3, 4, 8, 54f1ossf1o 6893 . 2 ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝐹:𝑊1-1-onto→{𝑠 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑠‘0) = 𝑋})
56 clwwlknon 27872 . . 3 (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑠 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑠‘0) = 𝑋}
57 f1oeq3 6609 . . 3 ((𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑠 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑠‘0) = 𝑋} → (𝐹:𝑊1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ 𝐹:𝑊1-1-onto→{𝑠 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑠‘0) = 𝑋}))
5856, 57ax-mp 5 . 2 (𝐹:𝑊1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ 𝐹:𝑊1-1-onto→{𝑠 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑠‘0) = 𝑋})
5955, 58sylibr 236 1 ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝐹:𝑊1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  [wsb 2068  wcel 2113  {crab 3145   class class class wbr 5069  cmpt 5149  1-1-ontowf1o 6357  cfv 6358  (class class class)co 7159  1st c1st 7690  2nd c2nd 7691  0cc0 10540  1c1 10541   + caddc 10543  cn 11641  cuz 12246  ...cfz 12895  chash 13693  Word cword 13864   prefix cpfx 14035  Vtxcvtx 26784  USPGraphcuspgr 26936  Walkscwlks 27381  ClWalkscclwlks 27554   ClWWalksN cclwwlkn 27805  ClWWalksNOncclwwlknon 27869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-dju 9333  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-lsw 13918  df-concat 13926  df-s1 13953  df-substr 14006  df-pfx 14036  df-edg 26836  df-uhgr 26846  df-upgr 26870  df-uspgr 26938  df-wlks 27384  df-clwlks 27555  df-clwwlk 27763  df-clwwlkn 27806  df-clwwlknon 27870
This theorem is referenced by:  clwwlknonclwlknonen  28145  dlwwlknondlwlknonf1o  28147
  Copyright terms: Public domain W3C validator