MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknonwwlknonb Structured version   Visualization version   GIF version

Theorem clwwlknonwwlknonb 27877
Description: A word over vertices represents a closed walk of a fixed length 𝑁 on vertex 𝑋 iff the word concatenated with 𝑋 represents a walk of length 𝑁 on 𝑋 and 𝑋. This theorem would not hold for 𝑁 = 0 and 𝑊 = ∅, see clwwlknwwlksnb 27826. (Contributed by AV, 4-Mar-2022.) (Revised by AV, 27-Mar-2022.)
Hypothesis
Ref Expression
clwwlknonwwlknonb.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
clwwlknonwwlknonb ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑋(𝑁 WWalksNOn 𝐺)𝑋)))

Proof of Theorem clwwlknonwwlknonb
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 s1eq 13946 . . . . . . . . . . . 12 ((𝑊‘0) = 𝑋 → ⟨“(𝑊‘0)”⟩ = ⟨“𝑋”⟩)
21oveq2d 7164 . . . . . . . . . . 11 ((𝑊‘0) = 𝑋 → (𝑊 ++ ⟨“(𝑊‘0)”⟩) = (𝑊 ++ ⟨“𝑋”⟩))
32eleq1d 2895 . . . . . . . . . 10 ((𝑊‘0) = 𝑋 → ((𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ (𝑁 WWalksN 𝐺) ↔ (𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑁 WWalksN 𝐺)))
43biimpac 481 . . . . . . . . 9 (((𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → (𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑁 WWalksN 𝐺))
54adantl 484 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) ∧ ((𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) → (𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑁 WWalksN 𝐺))
6 fvex 6676 . . . . . . . . . . . . . 14 (𝑊‘0) ∈ V
7 eleq1 2898 . . . . . . . . . . . . . 14 ((𝑊‘0) = 𝑋 → ((𝑊‘0) ∈ V ↔ 𝑋 ∈ V))
86, 7mpbii 235 . . . . . . . . . . . . 13 ((𝑊‘0) = 𝑋𝑋 ∈ V)
9 clwwlknonwwlknonb.v . . . . . . . . . . . . . . . 16 𝑉 = (Vtx‘𝐺)
10 eqid 2819 . . . . . . . . . . . . . . . 16 (Edg‘𝐺) = (Edg‘𝐺)
119, 10wwlknp 27613 . . . . . . . . . . . . . . 15 ((𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑁 WWalksN 𝐺) → ((𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉 ∧ (♯‘(𝑊 ++ ⟨“𝑋”⟩)) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){((𝑊 ++ ⟨“𝑋”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑋”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
12 simprrl 779 . . . . . . . . . . . . . . . . . 18 ((((𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉 ∧ (♯‘(𝑊 ++ ⟨“𝑋”⟩)) = (𝑁 + 1)) ∧ (𝑋 ∈ V ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ))) → 𝑊 ∈ Word 𝑉)
13 simpl 485 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) → 𝑊 ∈ Word 𝑉)
1413anim2i 618 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋 ∈ V ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ)) → (𝑋 ∈ V ∧ 𝑊 ∈ Word 𝑉))
1514ancomd 464 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 ∈ V ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ)) → (𝑊 ∈ Word 𝑉𝑋 ∈ V))
16 ccats1alpha 13965 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑊 ∈ Word 𝑉𝑋 ∈ V) → ((𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉 ↔ (𝑊 ∈ Word 𝑉𝑋𝑉)))
1715, 16syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ V ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ)) → ((𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉 ↔ (𝑊 ∈ Word 𝑉𝑋𝑉)))
18 simpr 487 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑊 ∈ Word 𝑉𝑋𝑉) → 𝑋𝑉)
1917, 18syl6bi 255 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 ∈ V ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ)) → ((𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉𝑋𝑉))
2019com12 32 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉 → ((𝑋 ∈ V ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ)) → 𝑋𝑉))
2120adantr 483 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉 ∧ (♯‘(𝑊 ++ ⟨“𝑋”⟩)) = (𝑁 + 1)) → ((𝑋 ∈ V ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ)) → 𝑋𝑉))
2221imp 409 . . . . . . . . . . . . . . . . . 18 ((((𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉 ∧ (♯‘(𝑊 ++ ⟨“𝑋”⟩)) = (𝑁 + 1)) ∧ (𝑋 ∈ V ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ))) → 𝑋𝑉)
23 nnnn0 11896 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
24 ccatws1lenp1b 13967 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ0) → ((♯‘(𝑊 ++ ⟨“𝑋”⟩)) = (𝑁 + 1) ↔ (♯‘𝑊) = 𝑁))
2523, 24sylan2 594 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) → ((♯‘(𝑊 ++ ⟨“𝑋”⟩)) = (𝑁 + 1) ↔ (♯‘𝑊) = 𝑁))
2625biimpd 231 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) → ((♯‘(𝑊 ++ ⟨“𝑋”⟩)) = (𝑁 + 1) → (♯‘𝑊) = 𝑁))
2726adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ V ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ)) → ((♯‘(𝑊 ++ ⟨“𝑋”⟩)) = (𝑁 + 1) → (♯‘𝑊) = 𝑁))
2827com12 32 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘(𝑊 ++ ⟨“𝑋”⟩)) = (𝑁 + 1) → ((𝑋 ∈ V ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ)) → (♯‘𝑊) = 𝑁))
2928adantl 484 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉 ∧ (♯‘(𝑊 ++ ⟨“𝑋”⟩)) = (𝑁 + 1)) → ((𝑋 ∈ V ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ)) → (♯‘𝑊) = 𝑁))
3029imp 409 . . . . . . . . . . . . . . . . . . 19 ((((𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉 ∧ (♯‘(𝑊 ++ ⟨“𝑋”⟩)) = (𝑁 + 1)) ∧ (𝑋 ∈ V ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ))) → (♯‘𝑊) = 𝑁)
3130eqcomd 2825 . . . . . . . . . . . . . . . . . 18 ((((𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉 ∧ (♯‘(𝑊 ++ ⟨“𝑋”⟩)) = (𝑁 + 1)) ∧ (𝑋 ∈ V ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ))) → 𝑁 = (♯‘𝑊))
3212, 22, 313jca 1122 . . . . . . . . . . . . . . . . 17 ((((𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉 ∧ (♯‘(𝑊 ++ ⟨“𝑋”⟩)) = (𝑁 + 1)) ∧ (𝑋 ∈ V ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ))) → (𝑊 ∈ Word 𝑉𝑋𝑉𝑁 = (♯‘𝑊)))
3332ex 415 . . . . . . . . . . . . . . . 16 (((𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉 ∧ (♯‘(𝑊 ++ ⟨“𝑋”⟩)) = (𝑁 + 1)) → ((𝑋 ∈ V ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ)) → (𝑊 ∈ Word 𝑉𝑋𝑉𝑁 = (♯‘𝑊))))
34333adant3 1126 . . . . . . . . . . . . . . 15 (((𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉 ∧ (♯‘(𝑊 ++ ⟨“𝑋”⟩)) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){((𝑊 ++ ⟨“𝑋”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑋”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((𝑋 ∈ V ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ)) → (𝑊 ∈ Word 𝑉𝑋𝑉𝑁 = (♯‘𝑊))))
3511, 34syl 17 . . . . . . . . . . . . . 14 ((𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑁 WWalksN 𝐺) → ((𝑋 ∈ V ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ)) → (𝑊 ∈ Word 𝑉𝑋𝑉𝑁 = (♯‘𝑊))))
3635expd 418 . . . . . . . . . . . . 13 ((𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑁 WWalksN 𝐺) → (𝑋 ∈ V → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) → (𝑊 ∈ Word 𝑉𝑋𝑉𝑁 = (♯‘𝑊)))))
378, 36syl5com 31 . . . . . . . . . . . 12 ((𝑊‘0) = 𝑋 → ((𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑁 WWalksN 𝐺) → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) → (𝑊 ∈ Word 𝑉𝑋𝑉𝑁 = (♯‘𝑊)))))
383, 37sylbid 242 . . . . . . . . . . 11 ((𝑊‘0) = 𝑋 → ((𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ (𝑁 WWalksN 𝐺) → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) → (𝑊 ∈ Word 𝑉𝑋𝑉𝑁 = (♯‘𝑊)))))
3938com13 88 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ (𝑁 WWalksN 𝐺) → ((𝑊‘0) = 𝑋 → (𝑊 ∈ Word 𝑉𝑋𝑉𝑁 = (♯‘𝑊)))))
4039imp32 421 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) ∧ ((𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) → (𝑊 ∈ Word 𝑉𝑋𝑉𝑁 = (♯‘𝑊)))
41 ccats1val2 13975 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑋𝑉𝑁 = (♯‘𝑊)) → ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) = 𝑋)
4240, 41syl 17 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) ∧ ((𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) → ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) = 𝑋)
43 ccat1st1st 13976 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝑉 → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0))
4443adantr 483 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0))
452fveq1d 6665 . . . . . . . . . . . . 13 ((𝑊‘0) = 𝑋 → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = ((𝑊 ++ ⟨“𝑋”⟩)‘0))
4645eqeq1d 2821 . . . . . . . . . . . 12 ((𝑊‘0) = 𝑋 → (((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0) ↔ ((𝑊 ++ ⟨“𝑋”⟩)‘0) = (𝑊‘0)))
4746adantl 484 . . . . . . . . . . 11 (((𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → (((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0) ↔ ((𝑊 ++ ⟨“𝑋”⟩)‘0) = (𝑊‘0)))
4844, 47syl5ibcom 247 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) → (((𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → ((𝑊 ++ ⟨“𝑋”⟩)‘0) = (𝑊‘0)))
4948imp 409 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) ∧ ((𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) → ((𝑊 ++ ⟨“𝑋”⟩)‘0) = (𝑊‘0))
50 simprr 771 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) ∧ ((𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) → (𝑊‘0) = 𝑋)
5149, 50eqtrd 2854 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) ∧ ((𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) → ((𝑊 ++ ⟨“𝑋”⟩)‘0) = 𝑋)
525, 42, 51jca31 517 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) ∧ ((𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) → (((𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) = 𝑋) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘0) = 𝑋))
5352ex 415 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) → (((𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → (((𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) = 𝑋) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘0) = 𝑋)))
54 simprl 769 . . . . . . . . . . . . . . . . . . . 20 ((((𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉 ∧ (♯‘(𝑊 ++ ⟨“𝑋”⟩)) = (𝑁 + 1)) ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ)) → 𝑊 ∈ Word 𝑉)
5525biimpcd 251 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘(𝑊 ++ ⟨“𝑋”⟩)) = (𝑁 + 1) → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) → (♯‘𝑊) = 𝑁))
5655adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉 ∧ (♯‘(𝑊 ++ ⟨“𝑋”⟩)) = (𝑁 + 1)) → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) → (♯‘𝑊) = 𝑁))
5756imp 409 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉 ∧ (♯‘(𝑊 ++ ⟨“𝑋”⟩)) = (𝑁 + 1)) ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ)) → (♯‘𝑊) = 𝑁)
5857eqcomd 2825 . . . . . . . . . . . . . . . . . . . 20 ((((𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉 ∧ (♯‘(𝑊 ++ ⟨“𝑋”⟩)) = (𝑁 + 1)) ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ)) → 𝑁 = (♯‘𝑊))
5954, 58jca 514 . . . . . . . . . . . . . . . . . . 19 ((((𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉 ∧ (♯‘(𝑊 ++ ⟨“𝑋”⟩)) = (𝑁 + 1)) ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ)) → (𝑊 ∈ Word 𝑉𝑁 = (♯‘𝑊)))
6059ex 415 . . . . . . . . . . . . . . . . . 18 (((𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉 ∧ (♯‘(𝑊 ++ ⟨“𝑋”⟩)) = (𝑁 + 1)) → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) → (𝑊 ∈ Word 𝑉𝑁 = (♯‘𝑊))))
61603adant3 1126 . . . . . . . . . . . . . . . . 17 (((𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉 ∧ (♯‘(𝑊 ++ ⟨“𝑋”⟩)) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){((𝑊 ++ ⟨“𝑋”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑋”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) → (𝑊 ∈ Word 𝑉𝑁 = (♯‘𝑊))))
6211, 61syl 17 . . . . . . . . . . . . . . . 16 ((𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑁 WWalksN 𝐺) → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) → (𝑊 ∈ Word 𝑉𝑁 = (♯‘𝑊))))
6362imp 409 . . . . . . . . . . . . . . 15 (((𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ)) → (𝑊 ∈ Word 𝑉𝑁 = (♯‘𝑊)))
64 eleq1 2898 . . . . . . . . . . . . . . . . . . 19 (𝑁 = (♯‘𝑊) → (𝑁 ∈ ℕ ↔ (♯‘𝑊) ∈ ℕ))
65 lbfzo0 13069 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ (0..^(♯‘𝑊)) ↔ (♯‘𝑊) ∈ ℕ)
6665biimpri 230 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑊) ∈ ℕ → 0 ∈ (0..^(♯‘𝑊)))
6764, 66syl6bi 255 . . . . . . . . . . . . . . . . . 18 (𝑁 = (♯‘𝑊) → (𝑁 ∈ ℕ → 0 ∈ (0..^(♯‘𝑊))))
6867com12 32 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → (𝑁 = (♯‘𝑊) → 0 ∈ (0..^(♯‘𝑊))))
6968ad2antll 727 . . . . . . . . . . . . . . . 16 (((𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ)) → (𝑁 = (♯‘𝑊) → 0 ∈ (0..^(♯‘𝑊))))
7069anim2d 613 . . . . . . . . . . . . . . 15 (((𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ)) → ((𝑊 ∈ Word 𝑉𝑁 = (♯‘𝑊)) → (𝑊 ∈ Word 𝑉 ∧ 0 ∈ (0..^(♯‘𝑊)))))
7163, 70mpd 15 . . . . . . . . . . . . . 14 (((𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ)) → (𝑊 ∈ Word 𝑉 ∧ 0 ∈ (0..^(♯‘𝑊))))
72 ccats1val1 13973 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝑉 ∧ 0 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ ⟨“𝑋”⟩)‘0) = (𝑊‘0))
7371, 72syl 17 . . . . . . . . . . . . 13 (((𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ)) → ((𝑊 ++ ⟨“𝑋”⟩)‘0) = (𝑊‘0))
7473eqeq1d 2821 . . . . . . . . . . . 12 (((𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ)) → (((𝑊 ++ ⟨“𝑋”⟩)‘0) = 𝑋 ↔ (𝑊‘0) = 𝑋))
7574biimpd 231 . . . . . . . . . . 11 (((𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℕ)) → (((𝑊 ++ ⟨“𝑋”⟩)‘0) = 𝑋 → (𝑊‘0) = 𝑋))
7675ex 415 . . . . . . . . . 10 ((𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑁 WWalksN 𝐺) → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) → (((𝑊 ++ ⟨“𝑋”⟩)‘0) = 𝑋 → (𝑊‘0) = 𝑋)))
7776adantr 483 . . . . . . . . 9 (((𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) = 𝑋) → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) → (((𝑊 ++ ⟨“𝑋”⟩)‘0) = 𝑋 → (𝑊‘0) = 𝑋)))
7877com3r 87 . . . . . . . 8 (((𝑊 ++ ⟨“𝑋”⟩)‘0) = 𝑋 → (((𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) = 𝑋) → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) → (𝑊‘0) = 𝑋)))
7978impcom 410 . . . . . . 7 ((((𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) = 𝑋) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘0) = 𝑋) → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) → (𝑊‘0) = 𝑋))
803biimparc 482 . . . . . . . . . 10 (((𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → (𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ (𝑁 WWalksN 𝐺))
81 simpr 487 . . . . . . . . . 10 (((𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → (𝑊‘0) = 𝑋)
8280, 81jca 514 . . . . . . . . 9 (((𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑋))
8382ex 415 . . . . . . . 8 ((𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑁 WWalksN 𝐺) → ((𝑊‘0) = 𝑋 → ((𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)))
8483ad2antrr 724 . . . . . . 7 ((((𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) = 𝑋) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘0) = 𝑋) → ((𝑊‘0) = 𝑋 → ((𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)))
8579, 84syldc 48 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) → ((((𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) = 𝑋) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘0) = 𝑋) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)))
8653, 85impbid 214 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) → (((𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) ↔ (((𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) = 𝑋) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘0) = 𝑋)))
87 3anan32 1091 . . . . 5 (((𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) = 𝑋) ↔ (((𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) = 𝑋) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘0) = 𝑋))
8886, 87syl6rbbr 292 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) → (((𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) = 𝑋) ↔ ((𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)))
899clwwlknwwlksnb 27826 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) → (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ (𝑁 WWalksN 𝐺)))
9089anbi1d 631 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) → ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) ↔ ((𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)))
9188, 90bitr4d 284 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) → (((𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) = 𝑋) ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)))
92 isclwwlknon 27862 . . 3 (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋))
9391, 92syl6rbbr 292 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ ((𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) = 𝑋)))
94 wwlknon 27627 . 2 ((𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑋(𝑁 WWalksNOn 𝐺)𝑋) ↔ ((𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) = 𝑋))
9593, 94syl6bbr 291 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑊 ++ ⟨“𝑋”⟩) ∈ (𝑋(𝑁 WWalksNOn 𝐺)𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1081   = wceq 1530  wcel 2107  wral 3136  Vcvv 3493  {cpr 4561  cfv 6348  (class class class)co 7148  0cc0 10529  1c1 10530   + caddc 10532  cn 11630  0cn0 11889  ..^cfzo 13025  chash 13682  Word cword 13853   ++ cconcat 13914  ⟨“cs1 13941  Vtxcvtx 26773  Edgcedg 26824   WWalksN cwwlksn 27596   WWalksNOn cwwlksnon 27597   ClWWalksN cclwwlkn 27794  ClWWalksNOncclwwlknon 27858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-fz 12885  df-fzo 13026  df-hash 13683  df-word 13854  df-lsw 13907  df-concat 13915  df-s1 13942  df-wwlks 27600  df-wwlksn 27601  df-wwlksnon 27602  df-clwwlk 27752  df-clwwlkn 27795  df-clwwlknon 27859
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator