MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknwwlksn Structured version   Visualization version   GIF version

Theorem clwwlknwwlksn 27164
Description: A word representing a closed walk of length 𝑁 also represents a walk of length 𝑁 − 1. The walk is one edge shorter than the closed walk, because the last edge connecting the last with the first vertex is missing. For example, if ⟨“𝑎𝑏𝑐”⟩ ∈ (3 ClWWalksN 𝐺) represents a closed walk "abca" of length 3, then ⟨“𝑎𝑏𝑐”⟩ ∈ (2 WWalksN 𝐺) represents a walk "abc" (not closed if 𝑎𝑐) of length 2, and ⟨“𝑎𝑏𝑐𝑎”⟩ ∈ (3 WWalksN 𝐺) represents also a closed walk "abca" of length 3. (Contributed by AV, 24-Jan-2022.) (Revised by AV, 22-Mar-2022.)
Assertion
Ref Expression
clwwlknwwlksn (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → 𝑊 ∈ ((𝑁 − 1) WWalksN 𝐺))

Proof of Theorem clwwlknwwlksn
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 clwwlknnn 27159 . 2 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 ∈ ℕ)
2 idd 24 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑊 ∈ Word (Vtx‘𝐺) → 𝑊 ∈ Word (Vtx‘𝐺)))
3 idd 24 . . . . . . . . . 10 (𝑁 ∈ ℕ → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
4 nncn 11218 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
5 npcan1 10645 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
64, 5syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
76eqcomd 2764 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 = ((𝑁 − 1) + 1))
87eqeq2d 2768 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((♯‘𝑊) = 𝑁 ↔ (♯‘𝑊) = ((𝑁 − 1) + 1)))
98biimpd 219 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((♯‘𝑊) = 𝑁 → (♯‘𝑊) = ((𝑁 − 1) + 1)))
102, 3, 93anim123d 1553 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = 𝑁) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1))))
1110com12 32 . . . . . . . 8 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = 𝑁) → (𝑁 ∈ ℕ → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1))))
12113exp 1113 . . . . . . 7 (𝑊 ∈ Word (Vtx‘𝐺) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((♯‘𝑊) = 𝑁 → (𝑁 ∈ ℕ → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1))))))
1312a1dd 50 . . . . . 6 (𝑊 ∈ Word (Vtx‘𝐺) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → ((♯‘𝑊) = 𝑁 → (𝑁 ∈ ℕ → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1)))))))
1413adantr 472 . . . . 5 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → ((♯‘𝑊) = 𝑁 → (𝑁 ∈ ℕ → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1)))))))
15143imp1 1441 . . . 4 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 𝑁) → (𝑁 ∈ ℕ → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1))))
1615com12 32 . . 3 (𝑁 ∈ ℕ → ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 𝑁) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1))))
17 isclwwlkn 27151 . . . . 5 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁))
1817a1i 11 . . . 4 (𝑁 ∈ ℕ → (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁)))
19 eqid 2758 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
20 eqid 2758 . . . . . 6 (Edg‘𝐺) = (Edg‘𝐺)
2119, 20isclwwlk 27105 . . . . 5 (𝑊 ∈ (ClWWalks‘𝐺) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))
2221anbi1i 733 . . . 4 ((𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁) ↔ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 𝑁))
2318, 22syl6bb 276 . . 3 (𝑁 ∈ ℕ → (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 𝑁)))
24 nnm1nn0 11524 . . . 4 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
2519, 20iswwlksnx 26941 . . . 4 ((𝑁 − 1) ∈ ℕ0 → (𝑊 ∈ ((𝑁 − 1) WWalksN 𝐺) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1))))
2624, 25syl 17 . . 3 (𝑁 ∈ ℕ → (𝑊 ∈ ((𝑁 − 1) WWalksN 𝐺) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1))))
2716, 23, 263imtr4d 283 . 2 (𝑁 ∈ ℕ → (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → 𝑊 ∈ ((𝑁 − 1) WWalksN 𝐺)))
281, 27mpcom 38 1 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → 𝑊 ∈ ((𝑁 − 1) WWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1630  wcel 2137  wne 2930  wral 3048  c0 4056  {cpr 4321  cfv 6047  (class class class)co 6811  cc 10124  0cc0 10126  1c1 10127   + caddc 10129  cmin 10456  cn 11210  0cn0 11482  ..^cfzo 12657  chash 13309  Word cword 13475  lastSclsw 13476  Vtxcvtx 26071  Edgcedg 26136   WWalksN cwwlksn 26927  ClWWalkscclwwlk 27102   ClWWalksN cclwwlkn 27145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-cnex 10182  ax-resscn 10183  ax-1cn 10184  ax-icn 10185  ax-addcl 10186  ax-addrcl 10187  ax-mulcl 10188  ax-mulrcl 10189  ax-mulcom 10190  ax-addass 10191  ax-mulass 10192  ax-distr 10193  ax-i2m1 10194  ax-1ne0 10195  ax-1rid 10196  ax-rnegex 10197  ax-rrecex 10198  ax-cnre 10199  ax-pre-lttri 10200  ax-pre-lttrn 10201  ax-pre-ltadd 10202  ax-pre-mulgt0 10203
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-int 4626  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-om 7229  df-1st 7331  df-2nd 7332  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-1o 7727  df-oadd 7731  df-er 7909  df-map 8023  df-pm 8024  df-en 8120  df-dom 8121  df-sdom 8122  df-fin 8123  df-card 8953  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-sub 10458  df-neg 10459  df-nn 11211  df-n0 11483  df-xnn0 11554  df-z 11568  df-uz 11878  df-fz 12518  df-fzo 12658  df-hash 13310  df-word 13483  df-wwlks 26931  df-wwlksn 26932  df-clwwlk 27103  df-clwwlkn 27147
This theorem is referenced by:  clwwnrepclwwn  27499
  Copyright terms: Public domain W3C validator