MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlks Structured version   Visualization version   GIF version

Theorem clwwlks 26746
Description: The set of closed walks (in an undirected graph) as words over the set of vertices. (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.)
Hypotheses
Ref Expression
clwwlks.v 𝑉 = (Vtx‘𝐺)
clwwlks.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
clwwlks (ClWWalks‘𝐺) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑤), (𝑤‘0)} ∈ 𝐸)}
Distinct variable groups:   𝑖,𝐺,𝑤   𝑤,𝑉
Allowed substitution hints:   𝐸(𝑤,𝑖)   𝑉(𝑖)

Proof of Theorem clwwlks
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 df-clwwlks 26744 . . . 4 ClWWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {( lastS ‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
21a1i 11 . . 3 (𝐺 ∈ V → ClWWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {( lastS ‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))}))
3 fveq2 6148 . . . . . . 7 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
4 clwwlks.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
53, 4syl6eqr 2673 . . . . . 6 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
6 wrdeq 13266 . . . . . 6 ((Vtx‘𝑔) = 𝑉 → Word (Vtx‘𝑔) = Word 𝑉)
75, 6syl 17 . . . . 5 (𝑔 = 𝐺 → Word (Vtx‘𝑔) = Word 𝑉)
8 fveq2 6148 . . . . . . . . 9 (𝑔 = 𝐺 → (Edg‘𝑔) = (Edg‘𝐺))
9 clwwlks.e . . . . . . . . 9 𝐸 = (Edg‘𝐺)
108, 9syl6eqr 2673 . . . . . . . 8 (𝑔 = 𝐺 → (Edg‘𝑔) = 𝐸)
1110eleq2d 2684 . . . . . . 7 (𝑔 = 𝐺 → ({(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ↔ {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸))
1211ralbidv 2980 . . . . . 6 (𝑔 = 𝐺 → (∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ↔ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸))
1310eleq2d 2684 . . . . . 6 (𝑔 = 𝐺 → ({( lastS ‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔) ↔ {( lastS ‘𝑤), (𝑤‘0)} ∈ 𝐸))
1412, 133anbi23d 1399 . . . . 5 (𝑔 = 𝐺 → ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {( lastS ‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔)) ↔ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑤), (𝑤‘0)} ∈ 𝐸)))
157, 14rabeqbidv 3181 . . . 4 (𝑔 = 𝐺 → {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {( lastS ‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))} = {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑤), (𝑤‘0)} ∈ 𝐸)})
1615adantl 482 . . 3 ((𝐺 ∈ V ∧ 𝑔 = 𝐺) → {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {( lastS ‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))} = {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑤), (𝑤‘0)} ∈ 𝐸)})
17 id 22 . . 3 (𝐺 ∈ V → 𝐺 ∈ V)
18 fvex 6158 . . . . . 6 (Vtx‘𝐺) ∈ V
194, 18eqeltri 2694 . . . . 5 𝑉 ∈ V
2019a1i 11 . . . 4 (𝐺 ∈ V → 𝑉 ∈ V)
21 wrdexg 13254 . . . 4 (𝑉 ∈ V → Word 𝑉 ∈ V)
22 rabexg 4772 . . . 4 (Word 𝑉 ∈ V → {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑤), (𝑤‘0)} ∈ 𝐸)} ∈ V)
2320, 21, 223syl 18 . . 3 (𝐺 ∈ V → {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑤), (𝑤‘0)} ∈ 𝐸)} ∈ V)
242, 16, 17, 23fvmptd 6245 . 2 (𝐺 ∈ V → (ClWWalks‘𝐺) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑤), (𝑤‘0)} ∈ 𝐸)})
25 fvprc 6142 . . 3 𝐺 ∈ V → (ClWWalks‘𝐺) = ∅)
26 noel 3895 . . . . . . . 8 ¬ {( lastS ‘𝑤), (𝑤‘0)} ∈ ∅
27 fvprc 6142 . . . . . . . . . 10 𝐺 ∈ V → (Edg‘𝐺) = ∅)
289, 27syl5eq 2667 . . . . . . . . 9 𝐺 ∈ V → 𝐸 = ∅)
2928eleq2d 2684 . . . . . . . 8 𝐺 ∈ V → ({( lastS ‘𝑤), (𝑤‘0)} ∈ 𝐸 ↔ {( lastS ‘𝑤), (𝑤‘0)} ∈ ∅))
3026, 29mtbiri 317 . . . . . . 7 𝐺 ∈ V → ¬ {( lastS ‘𝑤), (𝑤‘0)} ∈ 𝐸)
3130adantr 481 . . . . . 6 ((¬ 𝐺 ∈ V ∧ 𝑤 ∈ Word 𝑉) → ¬ {( lastS ‘𝑤), (𝑤‘0)} ∈ 𝐸)
3231intn3an3d 1441 . . . . 5 ((¬ 𝐺 ∈ V ∧ 𝑤 ∈ Word 𝑉) → ¬ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑤), (𝑤‘0)} ∈ 𝐸))
3332ralrimiva 2960 . . . 4 𝐺 ∈ V → ∀𝑤 ∈ Word 𝑉 ¬ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑤), (𝑤‘0)} ∈ 𝐸))
34 rabeq0 3931 . . . 4 ({𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑤), (𝑤‘0)} ∈ 𝐸)} = ∅ ↔ ∀𝑤 ∈ Word 𝑉 ¬ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑤), (𝑤‘0)} ∈ 𝐸))
3533, 34sylibr 224 . . 3 𝐺 ∈ V → {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑤), (𝑤‘0)} ∈ 𝐸)} = ∅)
3625, 35eqtr4d 2658 . 2 𝐺 ∈ V → (ClWWalks‘𝐺) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑤), (𝑤‘0)} ∈ 𝐸)})
3724, 36pm2.61i 176 1 (ClWWalks‘𝐺) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑤), (𝑤‘0)} ∈ 𝐸)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  {crab 2911  Vcvv 3186  c0 3891  {cpr 4150  cmpt 4673  cfv 5847  (class class class)co 6604  0cc0 9880  1c1 9881   + caddc 9883  cmin 10210  ..^cfzo 12406  #chash 13057  Word cword 13230   lastS clsw 13231  Vtxcvtx 25774  Edgcedg 25839  ClWWalkscclwwlks 26742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-hash 13058  df-word 13238  df-clwwlks 26744
This theorem is referenced by:  isclwwlks  26747  clwwlkssswrd  26777
  Copyright terms: Public domain W3C validator