MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlksext2edg Structured version   Visualization version   GIF version

Theorem clwwlksext2edg 26789
Description: If a word concatenated with a vertex represents a closed walk in (in a graph), there is an edge between this vertex and the last vertex of the word, and between this vertex and the first vertex of the word. (Contributed by Alexander van der Vekens, 3-Oct-2018.) (Revised by AV, 27-Apr-2021.)
Hypotheses
Ref Expression
clwwlksext2edg.v 𝑉 = (Vtx‘𝐺)
clwwlksext2edg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
clwwlksext2edg (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (𝑊 ++ ⟨“𝑍”⟩) ∈ (𝑁 ClWWalksN 𝐺)) → ({( lastS ‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸))

Proof of Theorem clwwlksext2edg
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 clwwlksext2edg.v . . . 4 𝑉 = (Vtx‘𝐺)
21clwwlknbp0 26751 . . 3 ((𝑊 ++ ⟨“𝑍”⟩) ∈ (𝑁 ClWWalksN 𝐺) → ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ) ∧ ((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁)))
3 clwwlksext2edg.e . . . . . 6 𝐸 = (Edg‘𝐺)
41, 3isclwwlksnx 26756 . . . . 5 (𝑁 ∈ ℕ → ((𝑊 ++ ⟨“𝑍”⟩) ∈ (𝑁 ClWWalksN 𝐺) ↔ (((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁)))
54ad2antlr 762 . . . 4 (((𝐺 ∈ V ∧ 𝑁 ∈ ℕ) ∧ ((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁)) → ((𝑊 ++ ⟨“𝑍”⟩) ∈ (𝑁 ClWWalksN 𝐺) ↔ (((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁)))
6 ige2m2fzo 12471 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (𝑁 − 2) ∈ (0..^(𝑁 − 1)))
763ad2ant3 1082 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → (𝑁 − 2) ∈ (0..^(𝑁 − 1)))
87adantr 481 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → (𝑁 − 2) ∈ (0..^(𝑁 − 1)))
9 oveq1 6611 . . . . . . . . . . . . . . . 16 ((#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → ((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1) = (𝑁 − 1))
109oveq2d 6620 . . . . . . . . . . . . . . 15 ((#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)) = (0..^(𝑁 − 1)))
1110eleq2d 2684 . . . . . . . . . . . . . 14 ((#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → ((𝑁 − 2) ∈ (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)) ↔ (𝑁 − 2) ∈ (0..^(𝑁 − 1))))
1211adantl 482 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑁 − 2) ∈ (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)) ↔ (𝑁 − 2) ∈ (0..^(𝑁 − 1))))
138, 12mpbird 247 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → (𝑁 − 2) ∈ (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)))
14 fveq2 6148 . . . . . . . . . . . . . . 15 (𝑖 = (𝑁 − 2) → ((𝑊 ++ ⟨“𝑍”⟩)‘𝑖) = ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)))
15 oveq1 6611 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑁 − 2) → (𝑖 + 1) = ((𝑁 − 2) + 1))
1615fveq2d 6152 . . . . . . . . . . . . . . 15 (𝑖 = (𝑁 − 2) → ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1)) = ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1)))
1714, 16preq12d 4246 . . . . . . . . . . . . . 14 (𝑖 = (𝑁 − 2) → {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} = {((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)), ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1))})
1817eleq1d 2683 . . . . . . . . . . . . 13 (𝑖 = (𝑁 − 2) → ({((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ {((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)), ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1))} ∈ 𝐸))
1918rspcv 3291 . . . . . . . . . . . 12 ((𝑁 − 2) ∈ (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)) → (∀𝑖 ∈ (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 → {((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)), ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1))} ∈ 𝐸))
2013, 19syl 17 . . . . . . . . . . 11 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → (∀𝑖 ∈ (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 → {((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)), ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1))} ∈ 𝐸))
21 ccatws1lenrev 13346 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉𝑍𝑉) → ((#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → (#‘𝑊) = (𝑁 − 1)))
22213adant3 1079 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → (#‘𝑊) = (𝑁 − 1)))
23 eluzelcn 11643 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℂ)
24 1cnd 10000 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → 1 ∈ ℂ)
2523, 24, 24subsub4d 10367 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → ((𝑁 − 1) − 1) = (𝑁 − (1 + 1)))
26 1p1e2 11078 . . . . . . . . . . . . . . . . . . . . . . 23 (1 + 1) = 2
2726a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → (1 + 1) = 2)
2827oveq2d 6620 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → (𝑁 − (1 + 1)) = (𝑁 − 2))
2925, 28eqtr2d 2656 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → (𝑁 − 2) = ((𝑁 − 1) − 1))
30293ad2ant3 1082 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → (𝑁 − 2) = ((𝑁 − 1) − 1))
31 oveq1 6611 . . . . . . . . . . . . . . . . . . . 20 ((#‘𝑊) = (𝑁 − 1) → ((#‘𝑊) − 1) = ((𝑁 − 1) − 1))
3231eqcomd 2627 . . . . . . . . . . . . . . . . . . 19 ((#‘𝑊) = (𝑁 − 1) → ((𝑁 − 1) − 1) = ((#‘𝑊) − 1))
3330, 32sylan9eq 2675 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘𝑊) = (𝑁 − 1)) → (𝑁 − 2) = ((#‘𝑊) − 1))
3433ex 450 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((#‘𝑊) = (𝑁 − 1) → (𝑁 − 2) = ((#‘𝑊) − 1)))
3522, 34syld 47 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → (𝑁 − 2) = ((#‘𝑊) − 1)))
3635imp 445 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → (𝑁 − 2) = ((#‘𝑊) − 1))
3736fveq2d 6152 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)) = ((𝑊 ++ ⟨“𝑍”⟩)‘((#‘𝑊) − 1)))
38 simpl1 1062 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘𝑊) = (𝑁 − 1)) → 𝑊 ∈ Word 𝑉)
39 s1cl 13321 . . . . . . . . . . . . . . . . . . . . 21 (𝑍𝑉 → ⟨“𝑍”⟩ ∈ Word 𝑉)
40393ad2ant2 1081 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ⟨“𝑍”⟩ ∈ Word 𝑉)
4140adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘𝑊) = (𝑁 − 1)) → ⟨“𝑍”⟩ ∈ Word 𝑉)
42 eluz2 11637 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
43 zre 11325 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
44 1red 9999 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 1 ∈ ℝ)
45 2re 11034 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2 ∈ ℝ
4645a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 2 ∈ ℝ)
47 simpl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 𝑁 ∈ ℝ)
48 1lt2 11138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1 < 2
4948a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 1 < 2)
50 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 2 ≤ 𝑁)
5144, 46, 47, 49, 50ltletrd 10141 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 1 < 𝑁)
52 1red 9999 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ ℝ → 1 ∈ ℝ)
53 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
5452, 53posdifd 10558 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ ℝ → (1 < 𝑁 ↔ 0 < (𝑁 − 1)))
5554adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → (1 < 𝑁 ↔ 0 < (𝑁 − 1)))
5651, 55mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 0 < (𝑁 − 1))
5756ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℝ → (2 ≤ 𝑁 → 0 < (𝑁 − 1)))
5843, 57syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℤ → (2 ≤ 𝑁 → 0 < (𝑁 − 1)))
5958a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 ∈ ℤ → (𝑁 ∈ ℤ → (2 ≤ 𝑁 → 0 < (𝑁 − 1))))
60593imp 1254 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → 0 < (𝑁 − 1))
6142, 60sylbi 207 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘2) → 0 < (𝑁 − 1))
6261ad2antlr 762 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊 ∈ Word 𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘𝑊) = (𝑁 − 1)) → 0 < (𝑁 − 1))
63 breq2 4617 . . . . . . . . . . . . . . . . . . . . . . 23 ((#‘𝑊) = (𝑁 − 1) → (0 < (#‘𝑊) ↔ 0 < (𝑁 − 1)))
6463adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊 ∈ Word 𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘𝑊) = (𝑁 − 1)) → (0 < (#‘𝑊) ↔ 0 < (𝑁 − 1)))
6562, 64mpbird 247 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊 ∈ Word 𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘𝑊) = (𝑁 − 1)) → 0 < (#‘𝑊))
66 hashneq0 13095 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑊 ∈ Word 𝑉 → (0 < (#‘𝑊) ↔ 𝑊 ≠ ∅))
6766adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑊 ∈ Word 𝑉𝑁 ∈ (ℤ‘2)) → (0 < (#‘𝑊) ↔ 𝑊 ≠ ∅))
6867adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊 ∈ Word 𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘𝑊) = (𝑁 − 1)) → (0 < (#‘𝑊) ↔ 𝑊 ≠ ∅))
6965, 68mpbid 222 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ∈ Word 𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘𝑊) = (𝑁 − 1)) → 𝑊 ≠ ∅)
70693adantl2 1216 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘𝑊) = (𝑁 − 1)) → 𝑊 ≠ ∅)
7138, 41, 703jca 1240 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘𝑊) = (𝑁 − 1)) → (𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉𝑊 ≠ ∅))
7271ex 450 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((#‘𝑊) = (𝑁 − 1) → (𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉𝑊 ≠ ∅)))
7322, 72syld 47 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → (𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉𝑊 ≠ ∅)))
7473imp 445 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → (𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉𝑊 ≠ ∅))
75 ccatval1lsw 13307 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉𝑊 ≠ ∅) → ((𝑊 ++ ⟨“𝑍”⟩)‘((#‘𝑊) − 1)) = ( lastS ‘𝑊))
7674, 75syl 17 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑊 ++ ⟨“𝑍”⟩)‘((#‘𝑊) − 1)) = ( lastS ‘𝑊))
7737, 76eqtrd 2655 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)) = ( lastS ‘𝑊))
78 2m1e1 11079 . . . . . . . . . . . . . . . . . . . . . . 23 (2 − 1) = 1
7978a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → (2 − 1) = 1)
8079eqcomd 2627 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → 1 = (2 − 1))
8180oveq2d 6620 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) = (𝑁 − (2 − 1)))
82 2cnd 11037 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℂ)
8323, 82, 24subsubd 10364 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → (𝑁 − (2 − 1)) = ((𝑁 − 2) + 1))
8481, 83eqtr2d 2656 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → ((𝑁 − 2) + 1) = (𝑁 − 1))
85843ad2ant3 1082 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((𝑁 − 2) + 1) = (𝑁 − 1))
86 eqeq2 2632 . . . . . . . . . . . . . . . . . 18 ((#‘𝑊) = (𝑁 − 1) → (((𝑁 − 2) + 1) = (#‘𝑊) ↔ ((𝑁 − 2) + 1) = (𝑁 − 1)))
8785, 86syl5ibrcom 237 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((#‘𝑊) = (𝑁 − 1) → ((𝑁 − 2) + 1) = (#‘𝑊)))
8822, 87syld 47 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → ((𝑁 − 2) + 1) = (#‘𝑊)))
8988imp 445 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑁 − 2) + 1) = (#‘𝑊))
9089fveq2d 6152 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1)) = ((𝑊 ++ ⟨“𝑍”⟩)‘(#‘𝑊)))
91 id 22 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉𝑍𝑉) → (𝑊 ∈ Word 𝑉𝑍𝑉))
92913adant3 1079 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → (𝑊 ∈ Word 𝑉𝑍𝑉))
9392adantr 481 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → (𝑊 ∈ Word 𝑉𝑍𝑉))
94 ccatws1ls 13348 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉𝑍𝑉) → ((𝑊 ++ ⟨“𝑍”⟩)‘(#‘𝑊)) = 𝑍)
9593, 94syl 17 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑊 ++ ⟨“𝑍”⟩)‘(#‘𝑊)) = 𝑍)
9690, 95eqtrd 2655 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1)) = 𝑍)
9777, 96preq12d 4246 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → {((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)), ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1))} = {( lastS ‘𝑊), 𝑍})
9897eleq1d 2683 . . . . . . . . . . 11 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ({((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)), ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1))} ∈ 𝐸 ↔ {( lastS ‘𝑊), 𝑍} ∈ 𝐸))
9920, 98sylibd 229 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → (∀𝑖 ∈ (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 → {( lastS ‘𝑊), 𝑍} ∈ 𝐸))
10099ex 450 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → (∀𝑖 ∈ (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 → {( lastS ‘𝑊), 𝑍} ∈ 𝐸)))
101100com13 88 . . . . . . . 8 (∀𝑖 ∈ (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 → ((#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → {( lastS ‘𝑊), 𝑍} ∈ 𝐸)))
1021013ad2ant2 1081 . . . . . . 7 (((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) → ((#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → {( lastS ‘𝑊), 𝑍} ∈ 𝐸)))
103102imp31 448 . . . . . 6 (((((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) ∧ (𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2))) → {( lastS ‘𝑊), 𝑍} ∈ 𝐸)
10492adantr 481 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘𝑊) = (𝑁 − 1)) → (𝑊 ∈ Word 𝑉𝑍𝑉))
105 lswccats1 13349 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉𝑍𝑉) → ( lastS ‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑍)
106104, 105syl 17 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘𝑊) = (𝑁 − 1)) → ( lastS ‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑍)
107613ad2ant3 1082 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → 0 < (𝑁 − 1))
108107adantr 481 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘𝑊) = (𝑁 − 1)) → 0 < (𝑁 − 1))
10963adantl 482 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘𝑊) = (𝑁 − 1)) → (0 < (#‘𝑊) ↔ 0 < (𝑁 − 1)))
110108, 109mpbird 247 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘𝑊) = (𝑁 − 1)) → 0 < (#‘𝑊))
111 ccatfv0 13306 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉 ∧ 0 < (#‘𝑊)) → ((𝑊 ++ ⟨“𝑍”⟩)‘0) = (𝑊‘0))
11238, 41, 110, 111syl3anc 1323 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘𝑊) = (𝑁 − 1)) → ((𝑊 ++ ⟨“𝑍”⟩)‘0) = (𝑊‘0))
113106, 112preq12d 4246 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘𝑊) = (𝑁 − 1)) → {( lastS ‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} = {𝑍, (𝑊‘0)})
114113ex 450 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((#‘𝑊) = (𝑁 − 1) → {( lastS ‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} = {𝑍, (𝑊‘0)}))
11522, 114syld 47 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → {( lastS ‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} = {𝑍, (𝑊‘0)}))
116115impcom 446 . . . . . . . . . 10 (((#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 ∧ (𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2))) → {( lastS ‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} = {𝑍, (𝑊‘0)})
117116eleq1d 2683 . . . . . . . . 9 (((#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 ∧ (𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2))) → ({( lastS ‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸 ↔ {𝑍, (𝑊‘0)} ∈ 𝐸))
118117biimpcd 239 . . . . . . . 8 ({( lastS ‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸 → (((#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 ∧ (𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2))) → {𝑍, (𝑊‘0)} ∈ 𝐸))
1191183ad2ant3 1082 . . . . . . 7 (((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) → (((#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 ∧ (𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2))) → {𝑍, (𝑊‘0)} ∈ 𝐸))
120119impl 649 . . . . . 6 (((((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) ∧ (𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2))) → {𝑍, (𝑊‘0)} ∈ 𝐸)
121103, 120jca 554 . . . . 5 (((((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) ∧ (𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2))) → ({( lastS ‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸))
122121ex 450 . . . 4 ((((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ({( lastS ‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸)))
1235, 122syl6bi 243 . . 3 (((𝐺 ∈ V ∧ 𝑁 ∈ ℕ) ∧ ((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁)) → ((𝑊 ++ ⟨“𝑍”⟩) ∈ (𝑁 ClWWalksN 𝐺) → ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ({( lastS ‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸))))
1242, 123mpcom 38 . 2 ((𝑊 ++ ⟨“𝑍”⟩) ∈ (𝑁 ClWWalksN 𝐺) → ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ({( lastS ‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸)))
125124impcom 446 1 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (𝑊 ++ ⟨“𝑍”⟩) ∈ (𝑁 ClWWalksN 𝐺)) → ({( lastS ‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  Vcvv 3186  c0 3891  {cpr 4150   class class class wbr 4613  cfv 5847  (class class class)co 6604  cr 9879  0cc0 9880  1c1 9881   + caddc 9883   < clt 10018  cle 10019  cmin 10210  cn 10964  2c2 11014  cz 11321  cuz 11631  ..^cfzo 12406  #chash 13057  Word cword 13230   lastS clsw 13231   ++ cconcat 13232  ⟨“cs1 13233  Vtxcvtx 25774  Edgcedg 25839   ClWWalksN cclwwlksn 26743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-fzo 12407  df-hash 13058  df-word 13238  df-lsw 13239  df-concat 13240  df-s1 13241  df-clwwlks 26744  df-clwwlksn 26745
This theorem is referenced by:  numclwwlk2lem1  27090
  Copyright terms: Public domain W3C validator