Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlksf1 Structured version   Visualization version   GIF version

Theorem clwwlksf1 26783
 Description: Lemma 3 for clwwlksbij 26786: F is a 1-1 function. (Contributed by AV, 28-Sep-2018.) (Revised by AV, 26-Apr-2021.)
Hypotheses
Ref Expression
clwwlksbij.d 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ( lastS ‘𝑤) = (𝑤‘0)}
clwwlksbij.f 𝐹 = (𝑡𝐷 ↦ (𝑡 substr ⟨0, 𝑁⟩))
Assertion
Ref Expression
clwwlksf1 (𝑁 ∈ ℕ → 𝐹:𝐷1-1→(𝑁 ClWWalksN 𝐺))
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑡,𝐷   𝑡,𝐺,𝑤   𝑡,𝑁
Allowed substitution hints:   𝐷(𝑤)   𝐹(𝑤,𝑡)

Proof of Theorem clwwlksf1
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clwwlksbij.d . . 3 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ( lastS ‘𝑤) = (𝑤‘0)}
2 clwwlksbij.f . . 3 𝐹 = (𝑡𝐷 ↦ (𝑡 substr ⟨0, 𝑁⟩))
31, 2clwwlksf 26781 . 2 (𝑁 ∈ ℕ → 𝐹:𝐷⟶(𝑁 ClWWalksN 𝐺))
41, 2clwwlksfv 26782 . . . . . 6 (𝑥𝐷 → (𝐹𝑥) = (𝑥 substr ⟨0, 𝑁⟩))
51, 2clwwlksfv 26782 . . . . . 6 (𝑦𝐷 → (𝐹𝑦) = (𝑦 substr ⟨0, 𝑁⟩))
64, 5eqeqan12d 2637 . . . . 5 ((𝑥𝐷𝑦𝐷) → ((𝐹𝑥) = (𝐹𝑦) ↔ (𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩)))
76adantl 482 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑥𝐷𝑦𝐷)) → ((𝐹𝑥) = (𝐹𝑦) ↔ (𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩)))
8 fveq2 6148 . . . . . . . . 9 (𝑤 = 𝑥 → ( lastS ‘𝑤) = ( lastS ‘𝑥))
9 fveq1 6147 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤‘0) = (𝑥‘0))
108, 9eqeq12d 2636 . . . . . . . 8 (𝑤 = 𝑥 → (( lastS ‘𝑤) = (𝑤‘0) ↔ ( lastS ‘𝑥) = (𝑥‘0)))
1110, 1elrab2 3348 . . . . . . 7 (𝑥𝐷 ↔ (𝑥 ∈ (𝑁 WWalksN 𝐺) ∧ ( lastS ‘𝑥) = (𝑥‘0)))
12 fveq2 6148 . . . . . . . . 9 (𝑤 = 𝑦 → ( lastS ‘𝑤) = ( lastS ‘𝑦))
13 fveq1 6147 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤‘0) = (𝑦‘0))
1412, 13eqeq12d 2636 . . . . . . . 8 (𝑤 = 𝑦 → (( lastS ‘𝑤) = (𝑤‘0) ↔ ( lastS ‘𝑦) = (𝑦‘0)))
1514, 1elrab2 3348 . . . . . . 7 (𝑦𝐷 ↔ (𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ ( lastS ‘𝑦) = (𝑦‘0)))
1611, 15anbi12i 732 . . . . . 6 ((𝑥𝐷𝑦𝐷) ↔ ((𝑥 ∈ (𝑁 WWalksN 𝐺) ∧ ( lastS ‘𝑥) = (𝑥‘0)) ∧ (𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ ( lastS ‘𝑦) = (𝑦‘0))))
17 eqid 2621 . . . . . . . . . 10 (Vtx‘𝐺) = (Vtx‘𝐺)
18 eqid 2621 . . . . . . . . . 10 (Edg‘𝐺) = (Edg‘𝐺)
1917, 18wwlknp 26603 . . . . . . . . 9 (𝑥 ∈ (𝑁 WWalksN 𝐺) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑥𝑖), (𝑥‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2017, 18wwlknp 26603 . . . . . . . . . . . . 13 (𝑦 ∈ (𝑁 WWalksN 𝐺) → (𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
21 simprlr 802 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0))) → (#‘𝑥) = (𝑁 + 1))
22 simpllr 798 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0))) → (#‘𝑦) = (𝑁 + 1))
2321, 22eqtr4d 2658 . . . . . . . . . . . . . . . . . . . 20 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0))) → (#‘𝑥) = (#‘𝑦))
2423ad2antlr 762 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) ∧ (𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩)) → (#‘𝑥) = (#‘𝑦))
25 nncn 10972 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
26 ax-1cn 9938 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1 ∈ ℂ
27 pncan 10231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
2827eqcomd 2627 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → 𝑁 = ((𝑁 + 1) − 1))
2925, 26, 28sylancl 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → 𝑁 = ((𝑁 + 1) − 1))
30 oveq1 6611 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((#‘𝑥) = (𝑁 + 1) → ((#‘𝑥) − 1) = ((𝑁 + 1) − 1))
3130eqcomd 2627 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((#‘𝑥) = (𝑁 + 1) → ((𝑁 + 1) − 1) = ((#‘𝑥) − 1))
3229, 31sylan9eqr 2677 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((#‘𝑥) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ) → 𝑁 = ((#‘𝑥) − 1))
3332opeq2d 4377 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((#‘𝑥) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ) → ⟨0, 𝑁⟩ = ⟨0, ((#‘𝑥) − 1)⟩)
3433oveq2d 6620 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((#‘𝑥) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ) → (𝑥 substr ⟨0, 𝑁⟩) = (𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩))
3533oveq2d 6620 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((#‘𝑥) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ) → (𝑦 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, ((#‘𝑥) − 1)⟩))
3634, 35eqeq12d 2636 . . . . . . . . . . . . . . . . . . . . . . . 24 (((#‘𝑥) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ) → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) ↔ (𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) = (𝑦 substr ⟨0, ((#‘𝑥) − 1)⟩)))
3736ex 450 . . . . . . . . . . . . . . . . . . . . . . 23 ((#‘𝑥) = (𝑁 + 1) → (𝑁 ∈ ℕ → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) ↔ (𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) = (𝑦 substr ⟨0, ((#‘𝑥) − 1)⟩))))
3837ad2antlr 762 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) ↔ (𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) = (𝑦 substr ⟨0, ((#‘𝑥) − 1)⟩))))
3938adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0))) → (𝑁 ∈ ℕ → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) ↔ (𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) = (𝑦 substr ⟨0, ((#‘𝑥) − 1)⟩))))
4039impcom 446 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) ↔ (𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) = (𝑦 substr ⟨0, ((#‘𝑥) − 1)⟩)))
4140biimpa 501 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) ∧ (𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩)) → (𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) = (𝑦 substr ⟨0, ((#‘𝑥) − 1)⟩))
42 simpll 789 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) → 𝑦 ∈ Word (Vtx‘𝐺))
43 simpll 789 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)) → 𝑥 ∈ Word (Vtx‘𝐺))
4442, 43anim12ci 590 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0))) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺)))
4544adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺)))
46 nnnn0 11243 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
47 0nn0 11251 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ ℕ0
4846, 47jctil 559 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → (0 ∈ ℕ0𝑁 ∈ ℕ0))
4948adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) → (0 ∈ ℕ0𝑁 ∈ ℕ0))
50 nnre 10971 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
5150lep1d 10899 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → 𝑁 ≤ (𝑁 + 1))
52 breq2 4617 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((#‘𝑥) = (𝑁 + 1) → (𝑁 ≤ (#‘𝑥) ↔ 𝑁 ≤ (𝑁 + 1)))
5351, 52syl5ibr 236 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((#‘𝑥) = (𝑁 + 1) → (𝑁 ∈ ℕ → 𝑁 ≤ (#‘𝑥)))
5453ad2antlr 762 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → 𝑁 ≤ (#‘𝑥)))
5554adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0))) → (𝑁 ∈ ℕ → 𝑁 ≤ (#‘𝑥)))
5655impcom 446 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) → 𝑁 ≤ (#‘𝑥))
57 breq2 4617 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((#‘𝑦) = (𝑁 + 1) → (𝑁 ≤ (#‘𝑦) ↔ 𝑁 ≤ (𝑁 + 1)))
5851, 57syl5ibr 236 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((#‘𝑦) = (𝑁 + 1) → (𝑁 ∈ ℕ → 𝑁 ≤ (#‘𝑦)))
5958ad2antlr 762 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) → (𝑁 ∈ ℕ → 𝑁 ≤ (#‘𝑦)))
6059adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0))) → (𝑁 ∈ ℕ → 𝑁 ≤ (#‘𝑦)))
6160impcom 446 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) → 𝑁 ≤ (#‘𝑦))
62 swrdspsleq 13387 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺)) ∧ (0 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑥) ∧ 𝑁 ≤ (#‘𝑦))) → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) ↔ ∀𝑖 ∈ (0..^𝑁)(𝑥𝑖) = (𝑦𝑖)))
6345, 49, 56, 61, 62syl112anc 1327 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) ↔ ∀𝑖 ∈ (0..^𝑁)(𝑥𝑖) = (𝑦𝑖)))
64 lbfzo0 12448 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
6564biimpri 218 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → 0 ∈ (0..^𝑁))
6665adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) → 0 ∈ (0..^𝑁))
67 fveq2 6148 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 0 → (𝑥𝑖) = (𝑥‘0))
68 fveq2 6148 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 0 → (𝑦𝑖) = (𝑦‘0))
6967, 68eqeq12d 2636 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 0 → ((𝑥𝑖) = (𝑦𝑖) ↔ (𝑥‘0) = (𝑦‘0)))
7069rspcv 3291 . . . . . . . . . . . . . . . . . . . . . . 23 (0 ∈ (0..^𝑁) → (∀𝑖 ∈ (0..^𝑁)(𝑥𝑖) = (𝑦𝑖) → (𝑥‘0) = (𝑦‘0)))
7166, 70syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) → (∀𝑖 ∈ (0..^𝑁)(𝑥𝑖) = (𝑦𝑖) → (𝑥‘0) = (𝑦‘0)))
7263, 71sylbid 230 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) → (𝑥‘0) = (𝑦‘0)))
7372imp 445 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) ∧ (𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩)) → (𝑥‘0) = (𝑦‘0))
74 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)) → ( lastS ‘𝑥) = (𝑥‘0))
75 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) → ( lastS ‘𝑦) = (𝑦‘0))
7674, 75eqeqan12rd 2639 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0))) → (( lastS ‘𝑥) = ( lastS ‘𝑦) ↔ (𝑥‘0) = (𝑦‘0)))
7776ad2antlr 762 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) ∧ (𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩)) → (( lastS ‘𝑥) = ( lastS ‘𝑦) ↔ (𝑥‘0) = (𝑦‘0)))
7873, 77mpbird 247 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) ∧ (𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩)) → ( lastS ‘𝑥) = ( lastS ‘𝑦))
7924, 41, 78jca32 557 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) ∧ (𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩)) → ((#‘𝑥) = (#‘𝑦) ∧ ((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) = (𝑦 substr ⟨0, ((#‘𝑥) − 1)⟩) ∧ ( lastS ‘𝑥) = ( lastS ‘𝑦))))
8043adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0))) → 𝑥 ∈ Word (Vtx‘𝐺))
8180adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) → 𝑥 ∈ Word (Vtx‘𝐺))
8242adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0))) → 𝑦 ∈ Word (Vtx‘𝐺))
8382adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) → 𝑦 ∈ Word (Vtx‘𝐺))
84 1red 9999 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 1 ∈ ℝ)
85 nngt0 10993 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 0 < 𝑁)
86 0lt1 10494 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 < 1
8786a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 0 < 1)
8850, 84, 85, 87addgt0d 10546 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → 0 < (𝑁 + 1))
89 breq2 4617 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((#‘𝑥) = (𝑁 + 1) → (0 < (#‘𝑥) ↔ 0 < (𝑁 + 1)))
9088, 89syl5ibr 236 . . . . . . . . . . . . . . . . . . . . . . . 24 ((#‘𝑥) = (𝑁 + 1) → (𝑁 ∈ ℕ → 0 < (#‘𝑥)))
9190ad2antlr 762 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → 0 < (#‘𝑥)))
9291adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0))) → (𝑁 ∈ ℕ → 0 < (#‘𝑥)))
9392impcom 446 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) → 0 < (#‘𝑥))
9481, 83, 933jca 1240 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺) ∧ 0 < (#‘𝑥)))
9594adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) ∧ (𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩)) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺) ∧ 0 < (#‘𝑥)))
96 2swrd1eqwrdeq 13392 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺) ∧ 0 < (#‘𝑥)) → (𝑥 = 𝑦 ↔ ((#‘𝑥) = (#‘𝑦) ∧ ((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) = (𝑦 substr ⟨0, ((#‘𝑥) − 1)⟩) ∧ ( lastS ‘𝑥) = ( lastS ‘𝑦)))))
9795, 96syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) ∧ (𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩)) → (𝑥 = 𝑦 ↔ ((#‘𝑥) = (#‘𝑦) ∧ ((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) = (𝑦 substr ⟨0, ((#‘𝑥) − 1)⟩) ∧ ( lastS ‘𝑥) = ( lastS ‘𝑦)))))
9879, 97mpbird 247 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) ∧ (𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩)) → 𝑥 = 𝑦)
9998exp31 629 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0))) → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) → 𝑥 = 𝑦)))
10099expdcom 455 . . . . . . . . . . . . . . 15 (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) → (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) → 𝑥 = 𝑦))))
101100ex 450 . . . . . . . . . . . . . 14 ((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) → (( lastS ‘𝑦) = (𝑦‘0) → (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) → 𝑥 = 𝑦)))))
1021013adant3 1079 . . . . . . . . . . . . 13 ((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (( lastS ‘𝑦) = (𝑦‘0) → (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) → 𝑥 = 𝑦)))))
10320, 102syl 17 . . . . . . . . . . . 12 (𝑦 ∈ (𝑁 WWalksN 𝐺) → (( lastS ‘𝑦) = (𝑦‘0) → (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) → 𝑥 = 𝑦)))))
104103imp 445 . . . . . . . . . . 11 ((𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ ( lastS ‘𝑦) = (𝑦‘0)) → (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) → 𝑥 = 𝑦))))
105104expdcom 455 . . . . . . . . . 10 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) → (( lastS ‘𝑥) = (𝑥‘0) → ((𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ ( lastS ‘𝑦) = (𝑦‘0)) → (𝑁 ∈ ℕ → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) → 𝑥 = 𝑦)))))
1061053adant3 1079 . . . . . . . . 9 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑥𝑖), (𝑥‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (( lastS ‘𝑥) = (𝑥‘0) → ((𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ ( lastS ‘𝑦) = (𝑦‘0)) → (𝑁 ∈ ℕ → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) → 𝑥 = 𝑦)))))
10719, 106syl 17 . . . . . . . 8 (𝑥 ∈ (𝑁 WWalksN 𝐺) → (( lastS ‘𝑥) = (𝑥‘0) → ((𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ ( lastS ‘𝑦) = (𝑦‘0)) → (𝑁 ∈ ℕ → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) → 𝑥 = 𝑦)))))
108107imp31 448 . . . . . . 7 (((𝑥 ∈ (𝑁 WWalksN 𝐺) ∧ ( lastS ‘𝑥) = (𝑥‘0)) ∧ (𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ ( lastS ‘𝑦) = (𝑦‘0))) → (𝑁 ∈ ℕ → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) → 𝑥 = 𝑦)))
109108com12 32 . . . . . 6 (𝑁 ∈ ℕ → (((𝑥 ∈ (𝑁 WWalksN 𝐺) ∧ ( lastS ‘𝑥) = (𝑥‘0)) ∧ (𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ ( lastS ‘𝑦) = (𝑦‘0))) → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) → 𝑥 = 𝑦)))
11016, 109syl5bi 232 . . . . 5 (𝑁 ∈ ℕ → ((𝑥𝐷𝑦𝐷) → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) → 𝑥 = 𝑦)))
111110imp 445 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑥𝐷𝑦𝐷)) → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) → 𝑥 = 𝑦))
1127, 111sylbid 230 . . 3 ((𝑁 ∈ ℕ ∧ (𝑥𝐷𝑦𝐷)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
113112ralrimivva 2965 . 2 (𝑁 ∈ ℕ → ∀𝑥𝐷𝑦𝐷 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
114 dff13 6466 . 2 (𝐹:𝐷1-1→(𝑁 ClWWalksN 𝐺) ↔ (𝐹:𝐷⟶(𝑁 ClWWalksN 𝐺) ∧ ∀𝑥𝐷𝑦𝐷 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
1153, 113, 114sylanbrc 697 1 (𝑁 ∈ ℕ → 𝐹:𝐷1-1→(𝑁 ClWWalksN 𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ∀wral 2907  {crab 2911  {cpr 4150  ⟨cop 4154   class class class wbr 4613   ↦ cmpt 4673  ⟶wf 5843  –1-1→wf1 5844  ‘cfv 5847  (class class class)co 6604  ℂcc 9878  0cc0 9880  1c1 9881   + caddc 9883   < clt 10018   ≤ cle 10019   − cmin 10210  ℕcn 10964  ℕ0cn0 11236  ..^cfzo 12406  #chash 13057  Word cword 13230   lastS clsw 13231   substr csubstr 13234  Vtxcvtx 25774  Edgcedg 25839   WWalksN cwwlksn 26587   ClWWalksN cclwwlksn 26743 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-hash 13058  df-word 13238  df-lsw 13239  df-s1 13241  df-substr 13242  df-wwlks 26591  df-wwlksn 26592  df-clwwlks 26744  df-clwwlksn 26745 This theorem is referenced by:  clwwlksf1o  26785
 Copyright terms: Public domain W3C validator