Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlksndivn Structured version   Visualization version   GIF version

Theorem clwwlksndivn 26836
 Description: The size of the set of closed walks (defined as words) of length n is divisible by n. (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 2-May-2021.)
Assertion
Ref Expression
clwwlksndivn ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∥ (#‘(𝑁 ClWWalksN 𝐺)))

Proof of Theorem clwwlksndivn
Dummy variables 𝑛 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
21fusgrvtxfi 26112 . . . . . 6 (𝐺 ∈ FinUSGraph → (Vtx‘𝐺) ∈ Fin)
32adantr 481 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (Vtx‘𝐺) ∈ Fin)
4 eqid 2621 . . . . . 6 (𝑁 ClWWalksN 𝐺) = (𝑁 ClWWalksN 𝐺)
5 eqid 2621 . . . . . 6 {⟨𝑡, 𝑢⟩ ∣ (𝑡 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} = {⟨𝑡, 𝑢⟩ ∣ (𝑡 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
64, 5qerclwwlksnfi 26829 . . . . 5 ((Vtx‘𝐺) ∈ Fin → ((𝑁 ClWWalksN 𝐺) / {⟨𝑡, 𝑢⟩ ∣ (𝑡 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}) ∈ Fin)
7 hashcl 13094 . . . . 5 (((𝑁 ClWWalksN 𝐺) / {⟨𝑡, 𝑢⟩ ∣ (𝑡 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}) ∈ Fin → (#‘((𝑁 ClWWalksN 𝐺) / {⟨𝑡, 𝑢⟩ ∣ (𝑡 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))})) ∈ ℕ0)
83, 6, 73syl 18 . . . 4 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (#‘((𝑁 ClWWalksN 𝐺) / {⟨𝑡, 𝑢⟩ ∣ (𝑡 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))})) ∈ ℕ0)
98nn0zd 11431 . . 3 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (#‘((𝑁 ClWWalksN 𝐺) / {⟨𝑡, 𝑢⟩ ∣ (𝑡 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))})) ∈ ℤ)
10 prmz 15320 . . . 4 (𝑁 ∈ ℙ → 𝑁 ∈ ℤ)
1110adantl 482 . . 3 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℤ)
12 dvdsmul2 14935 . . 3 (((#‘((𝑁 ClWWalksN 𝐺) / {⟨𝑡, 𝑢⟩ ∣ (𝑡 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))})) ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ ((#‘((𝑁 ClWWalksN 𝐺) / {⟨𝑡, 𝑢⟩ ∣ (𝑡 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))})) · 𝑁))
139, 11, 12syl2anc 692 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∥ ((#‘((𝑁 ClWWalksN 𝐺) / {⟨𝑡, 𝑢⟩ ∣ (𝑡 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))})) · 𝑁))
144, 5fusgrhashclwwlkn 26835 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (#‘(𝑁 ClWWalksN 𝐺)) = ((#‘((𝑁 ClWWalksN 𝐺) / {⟨𝑡, 𝑢⟩ ∣ (𝑡 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))})) · 𝑁))
1513, 14breqtrrd 4646 1 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∥ (#‘(𝑁 ClWWalksN 𝐺)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ∃wrex 2908   class class class wbr 4618  {copab 4677  ‘cfv 5852  (class class class)co 6610   / cqs 7693  Fincfn 7906  0cc0 9887   · cmul 9892  ℕ0cn0 11243  ℤcz 11328  ...cfz 12275  #chash 13064   cyclShift ccsh 13478   ∥ cdvds 14914  ℙcprime 15316  Vtxcvtx 25787   FinUSGraph cfusgr 26109   ClWWalksN cclwwlksn 26756 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-disj 4589  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-ec 7696  df-qs 7700  df-map 7811  df-pm 7812  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-sup 8299  df-inf 8300  df-oi 8366  df-card 8716  df-cda 8941  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-n0 11244  df-xnn0 11315  df-z 11329  df-uz 11639  df-rp 11784  df-ico 12130  df-fz 12276  df-fzo 12414  df-fl 12540  df-mod 12616  df-seq 12749  df-exp 12808  df-hash 13065  df-word 13245  df-lsw 13246  df-concat 13247  df-substr 13249  df-reps 13252  df-csh 13479  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-clim 14160  df-sum 14358  df-dvds 14915  df-gcd 15148  df-prm 15317  df-phi 15402  df-edg 25853  df-umgr 25887  df-usgr 25952  df-fusgr 26110  df-clwwlks 26757  df-clwwlksn 26758 This theorem is referenced by:  clwlksndivn  26851  numclwwlk8  27117
 Copyright terms: Public domain W3C validator