Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlksnscsh Structured version   Visualization version   GIF version

Theorem clwwlksnscsh 26800
 Description: The set of cyclical shifts of a word representing a closed walk is the set of closed walks represented by cyclical shifts of a word. (Contributed by Alexander van der Vekens, 15-Jun-2018.) (Revised by AV, 30-Apr-2021.)
Assertion
Ref Expression
clwwlksnscsh ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)})
Distinct variable groups:   𝑛,𝐺,𝑦   𝑛,𝑁,𝑦   𝑛,𝑊,𝑦

Proof of Theorem clwwlksnscsh
Dummy variables 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2630 . . . 4 (𝑦 = 𝑥 → (𝑦 = (𝑊 cyclShift 𝑛) ↔ 𝑥 = (𝑊 cyclShift 𝑛)))
21rexbidv 3050 . . 3 (𝑦 = 𝑥 → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛)))
32cbvrabv 3190 . 2 {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)} = {𝑥 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛)}
4 eqid 2626 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
54clwwlksnwrd 26747 . . . . . . 7 (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → 𝑤 ∈ Word (Vtx‘𝐺))
65ad2antrl 763 . . . . . 6 (((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) → 𝑤 ∈ Word (Vtx‘𝐺))
7 simprr 795 . . . . . 6 (((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) → ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))
86, 7jca 554 . . . . 5 (((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)))
9 simprr 795 . . . . . . . . . . . . 13 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) ∧ (𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺))) → 𝑊 ∈ (𝑁 ClWWalksN 𝐺))
10 simpllr 798 . . . . . . . . . . . . 13 ((((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) ∧ (𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺))) ∧ 𝑤 = (𝑊 cyclShift 𝑛)) → 𝑛 ∈ (0...𝑁))
11 clwwnisshclwwsn 26790 . . . . . . . . . . . . 13 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑛 ∈ (0...𝑁)) → (𝑊 cyclShift 𝑛) ∈ (𝑁 ClWWalksN 𝐺))
129, 10, 11syl2an2r 875 . . . . . . . . . . . 12 ((((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) ∧ (𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺))) ∧ 𝑤 = (𝑊 cyclShift 𝑛)) → (𝑊 cyclShift 𝑛) ∈ (𝑁 ClWWalksN 𝐺))
13 eleq1 2692 . . . . . . . . . . . . 13 (𝑤 = (𝑊 cyclShift 𝑛) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 cyclShift 𝑛) ∈ (𝑁 ClWWalksN 𝐺)))
1413adantl 482 . . . . . . . . . . . 12 ((((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) ∧ (𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺))) ∧ 𝑤 = (𝑊 cyclShift 𝑛)) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 cyclShift 𝑛) ∈ (𝑁 ClWWalksN 𝐺)))
1512, 14mpbird 247 . . . . . . . . . . 11 ((((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) ∧ (𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺))) ∧ 𝑤 = (𝑊 cyclShift 𝑛)) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺))
1615exp31 629 . . . . . . . . . 10 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) → ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑤 = (𝑊 cyclShift 𝑛) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺))))
1716com23 86 . . . . . . . . 9 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) → (𝑤 = (𝑊 cyclShift 𝑛) → ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺))))
1817rexlimdva 3029 . . . . . . . 8 (𝑤 ∈ Word (Vtx‘𝐺) → (∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛) → ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺))))
1918imp 445 . . . . . . 7 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)) → ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺)))
2019impcom 446 . . . . . 6 (((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺))
21 simprr 795 . . . . . 6 (((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) → ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))
2220, 21jca 554 . . . . 5 (((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)))
238, 22impbida 876 . . . 4 ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))))
24 eqeq1 2630 . . . . . 6 (𝑥 = 𝑤 → (𝑥 = (𝑊 cyclShift 𝑛) ↔ 𝑤 = (𝑊 cyclShift 𝑛)))
2524rexbidv 3050 . . . . 5 (𝑥 = 𝑤 → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)))
2625elrab 3351 . . . 4 (𝑤 ∈ {𝑥 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛)} ↔ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)))
27 eqeq1 2630 . . . . . 6 (𝑦 = 𝑤 → (𝑦 = (𝑊 cyclShift 𝑛) ↔ 𝑤 = (𝑊 cyclShift 𝑛)))
2827rexbidv 3050 . . . . 5 (𝑦 = 𝑤 → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)))
2928elrab 3351 . . . 4 (𝑤 ∈ {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)} ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)))
3023, 26, 293bitr4g 303 . . 3 ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑤 ∈ {𝑥 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛)} ↔ 𝑤 ∈ {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)}))
3130eqrdv 2624 . 2 ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → {𝑥 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)})
323, 31syl5eq 2672 1 ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1992  ∃wrex 2913  {crab 2916  ‘cfv 5850  (class class class)co 6605  0cc0 9881  ℕ0cn0 11237  ...cfz 12265  Word cword 13225   cyclShift ccsh 13466  Vtxcvtx 25769   ClWWalksN cclwwlksn 26737 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-map 7805  df-pm 7806  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-sup 8293  df-inf 8294  df-card 8710  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-n0 11238  df-z 11323  df-uz 11632  df-rp 11777  df-ico 12120  df-fz 12266  df-fzo 12404  df-fl 12530  df-mod 12606  df-hash 13055  df-word 13233  df-lsw 13234  df-concat 13235  df-substr 13237  df-csh 13467  df-clwwlks 26738  df-clwwlksn 26739 This theorem is referenced by:  hashecclwwlksn1  26814  umgrhashecclwwlk  26815
 Copyright terms: Public domain W3C validator