MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkvbij Structured version   Visualization version   GIF version

Theorem clwwlkvbij 27894
Description: There is a bijection between the set of closed walks of a fixed length 𝑁 on a fixed vertex 𝑋 represented by walks (as word) and the set of closed walks (as words) of the fixed length 𝑁 on the fixed vertex 𝑋. The difference between these two representations is that in the first case the fixed vertex is repeated at the end of the word, and in the second case it is not. (Contributed by Alexander van der Vekens, 29-Sep-2018.) (Revised by AV, 26-Apr-2021.) (Revised by AV, 7-Jul-2022.) (Proof shortened by AV, 2-Nov-2022.)
Assertion
Ref Expression
clwwlkvbij ((𝑋𝑉𝑁 ∈ ℕ) → ∃𝑓 𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁))
Distinct variable groups:   𝑓,𝐺,𝑤   𝑓,𝑁,𝑤   𝑓,𝑉   𝑓,𝑋,𝑤
Allowed substitution hint:   𝑉(𝑤)

Proof of Theorem clwwlkvbij
Dummy variables 𝑥 𝑦 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7191 . . . . 5 (𝑁 WWalksN 𝐺) ∈ V
21mptrabex 6990 . . . 4 (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ∈ V
32resex 5901 . . 3 ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}) ∈ V
4 eqid 2823 . . . . . 6 (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) = (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁))
5 eqid 2823 . . . . . . 7 {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} = {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)}
65, 4clwwlkf1o 27832 . . . . . 6 (𝑁 ∈ ℕ → (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)):{𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)}–1-1-onto→(𝑁 ClWWalksN 𝐺))
7 fveq1 6671 . . . . . . . . 9 (𝑦 = (𝑤 prefix 𝑁) → (𝑦‘0) = ((𝑤 prefix 𝑁)‘0))
87eqeq1d 2825 . . . . . . . 8 (𝑦 = (𝑤 prefix 𝑁) → ((𝑦‘0) = 𝑋 ↔ ((𝑤 prefix 𝑁)‘0) = 𝑋))
983ad2ant3 1131 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∧ 𝑦 = (𝑤 prefix 𝑁)) → ((𝑦‘0) = 𝑋 ↔ ((𝑤 prefix 𝑁)‘0) = 𝑋))
10 fveq2 6672 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (lastS‘𝑥) = (lastS‘𝑤))
11 fveq1 6671 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝑥‘0) = (𝑤‘0))
1210, 11eqeq12d 2839 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → ((lastS‘𝑥) = (𝑥‘0) ↔ (lastS‘𝑤) = (𝑤‘0)))
1312elrab 3682 . . . . . . . . . . . 12 (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↔ (𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)))
14 eqid 2823 . . . . . . . . . . . . . . 15 (Vtx‘𝐺) = (Vtx‘𝐺)
15 eqid 2823 . . . . . . . . . . . . . . 15 (Edg‘𝐺) = (Edg‘𝐺)
1614, 15wwlknp 27623 . . . . . . . . . . . . . 14 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
17 simpll 765 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → 𝑤 ∈ Word (Vtx‘𝐺))
18 nnz 12007 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
19 uzid 12261 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
20 peano2uz 12304 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ𝑁) → (𝑁 + 1) ∈ (ℤ𝑁))
2118, 19, 203syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ (ℤ𝑁))
22 elfz1end 12940 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (1...𝑁))
2322biimpi 218 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑁 ∈ (1...𝑁))
24 fzss2 12950 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 + 1) ∈ (ℤ𝑁) → (1...𝑁) ⊆ (1...(𝑁 + 1)))
2524sselda 3969 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 + 1) ∈ (ℤ𝑁) ∧ 𝑁 ∈ (1...𝑁)) → 𝑁 ∈ (1...(𝑁 + 1)))
2621, 23, 25syl2anc 586 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ∈ (1...(𝑁 + 1)))
2726adantl 484 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ (1...(𝑁 + 1)))
28 oveq2 7166 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑤) = (𝑁 + 1) → (1...(♯‘𝑤)) = (1...(𝑁 + 1)))
2928eleq2d 2900 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑤) = (𝑁 + 1) → (𝑁 ∈ (1...(♯‘𝑤)) ↔ 𝑁 ∈ (1...(𝑁 + 1))))
3029adantl 484 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) → (𝑁 ∈ (1...(♯‘𝑤)) ↔ 𝑁 ∈ (1...(𝑁 + 1))))
3130adantr 483 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (𝑁 ∈ (1...(♯‘𝑤)) ↔ 𝑁 ∈ (1...(𝑁 + 1))))
3227, 31mpbird 259 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ (1...(♯‘𝑤)))
3317, 32jca 514 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤))))
3433ex 415 . . . . . . . . . . . . . . 15 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) → (𝑁 ∈ ℕ → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤)))))
35343adant3 1128 . . . . . . . . . . . . . 14 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝑁 ∈ ℕ → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤)))))
3616, 35syl 17 . . . . . . . . . . . . 13 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤)))))
3736adantr 483 . . . . . . . . . . . 12 ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) → (𝑁 ∈ ℕ → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤)))))
3813, 37sylbi 219 . . . . . . . . . . 11 (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} → (𝑁 ∈ ℕ → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤)))))
3938impcom 410 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)}) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤))))
40 pfxfv0 14056 . . . . . . . . . 10 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤))) → ((𝑤 prefix 𝑁)‘0) = (𝑤‘0))
4139, 40syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)}) → ((𝑤 prefix 𝑁)‘0) = (𝑤‘0))
4241eqeq1d 2825 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)}) → (((𝑤 prefix 𝑁)‘0) = 𝑋 ↔ (𝑤‘0) = 𝑋))
43423adant3 1128 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∧ 𝑦 = (𝑤 prefix 𝑁)) → (((𝑤 prefix 𝑁)‘0) = 𝑋 ↔ (𝑤‘0) = 𝑋))
449, 43bitrd 281 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∧ 𝑦 = (𝑤 prefix 𝑁)) → ((𝑦‘0) = 𝑋 ↔ (𝑤‘0) = 𝑋))
454, 6, 44f1oresrab 6891 . . . . 5 (𝑁 ∈ ℕ → ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→{𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑦‘0) = 𝑋})
4645adantl 484 . . . 4 ((𝑋𝑉𝑁 ∈ ℕ) → ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→{𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑦‘0) = 𝑋})
47 clwwlknon 27871 . . . . . 6 (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑦‘0) = 𝑋}
4847a1i 11 . . . . 5 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑦‘0) = 𝑋})
4948f1oeq3d 6614 . . . 4 ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→{𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑦‘0) = 𝑋}))
5046, 49mpbird 259 . . 3 ((𝑋𝑉𝑁 ∈ ℕ) → ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁))
51 f1oeq1 6606 . . . 4 (𝑓 = ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}) → (𝑓:{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁)))
5251spcegv 3599 . . 3 (((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}) ∈ V → (((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) → ∃𝑓 𝑓:{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁)))
533, 50, 52mpsyl 68 . 2 ((𝑋𝑉𝑁 ∈ ℕ) → ∃𝑓 𝑓:{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁))
54 df-rab 3149 . . . . 5 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)} = {𝑤 ∣ (𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋))}
55 anass 471 . . . . . . 7 (((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ∧ (𝑤‘0) = 𝑋) ↔ (𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)))
5655bicomi 226 . . . . . 6 ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)) ↔ ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ∧ (𝑤‘0) = 𝑋))
5756abbii 2888 . . . . 5 {𝑤 ∣ (𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋))} = {𝑤 ∣ ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ∧ (𝑤‘0) = 𝑋)}
5813bicomi 226 . . . . . . . 8 ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ↔ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)})
5958anbi1i 625 . . . . . . 7 (((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ∧ (𝑤‘0) = 𝑋) ↔ (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∧ (𝑤‘0) = 𝑋))
6059abbii 2888 . . . . . 6 {𝑤 ∣ ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ∧ (𝑤‘0) = 𝑋)} = {𝑤 ∣ (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∧ (𝑤‘0) = 𝑋)}
61 df-rab 3149 . . . . . 6 {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋} = {𝑤 ∣ (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∧ (𝑤‘0) = 𝑋)}
6260, 61eqtr4i 2849 . . . . 5 {𝑤 ∣ ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ∧ (𝑤‘0) = 𝑋)} = {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}
6354, 57, 623eqtri 2850 . . . 4 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)} = {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}
64 f1oeq2 6607 . . . 4 ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)} = {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋} → (𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ 𝑓:{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁)))
6563, 64mp1i 13 . . 3 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ 𝑓:{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁)))
6665exbidv 1922 . 2 ((𝑋𝑉𝑁 ∈ ℕ) → (∃𝑓 𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ ∃𝑓 𝑓:{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁)))
6753, 66mpbird 259 1 ((𝑋𝑉𝑁 ∈ ℕ) → ∃𝑓 𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  {cab 2801  wral 3140  {crab 3144  Vcvv 3496  {cpr 4571  cmpt 5148  cres 5559  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  0cc0 10539  1c1 10540   + caddc 10542  cn 11640  cz 11984  cuz 12246  ...cfz 12895  ..^cfzo 13036  chash 13693  Word cword 13864  lastSclsw 13916   prefix cpfx 14034  Vtxcvtx 26783  Edgcedg 26834   WWalksN cwwlksn 27606   ClWWalksN cclwwlkn 27804  ClWWalksNOncclwwlknon 27868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-lsw 13917  df-concat 13925  df-s1 13952  df-substr 14005  df-pfx 14035  df-wwlks 27610  df-wwlksn 27611  df-clwwlk 27762  df-clwwlkn 27805  df-clwwlknon 27869
This theorem is referenced by:  numclwwlkqhash  28156
  Copyright terms: Public domain W3C validator