MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmetcau Structured version   Visualization version   GIF version

Theorem cmetcau 22808
Description: The convergence of a Cauchy sequence in a complete metric space. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 14-Oct-2015.)
Hypothesis
Ref Expression
cmetcau.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
cmetcau ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ dom (⇝𝑡𝐽))

Proof of Theorem cmetcau
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmetmet 22805 . . . . 5 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
2 metxmet 21885 . . . . 5 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
31, 2syl 17 . . . 4 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
4 caun0 22800 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝑋 ≠ ∅)
53, 4sylan 486 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝑋 ≠ ∅)
6 n0 3884 . . 3 (𝑋 ≠ ∅ ↔ ∃𝑥 𝑥𝑋)
75, 6sylib 206 . 2 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → ∃𝑥 𝑥𝑋)
8 cmetcau.1 . . 3 𝐽 = (MetOpen‘𝐷)
9 simpll 785 . . 3 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) ∧ 𝑥𝑋) → 𝐷 ∈ (CMet‘𝑋))
10 simpr 475 . . 3 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) ∧ 𝑥𝑋) → 𝑥𝑋)
11 simplr 787 . . 3 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) ∧ 𝑥𝑋) → 𝐹 ∈ (Cau‘𝐷))
12 eqid 2604 . . 3 (𝑦 ∈ ℕ ↦ if(𝑦 ∈ dom 𝐹, (𝐹𝑦), 𝑥)) = (𝑦 ∈ ℕ ↦ if(𝑦 ∈ dom 𝐹, (𝐹𝑦), 𝑥))
138, 9, 10, 11, 12cmetcaulem 22807 . 2 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) ∧ 𝑥𝑋) → 𝐹 ∈ dom (⇝𝑡𝐽))
147, 13exlimddv 1848 1 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ dom (⇝𝑡𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wex 1694  wcel 1975  wne 2774  c0 3868  ifcif 4030  cmpt 4632  dom cdm 5023  cfv 5785  cn 10862  ∞Metcxmt 19493  Metcme 19494  MetOpencmopn 19498  𝑡clm 20777  Caucca 22772  CMetcms 22773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2227  ax-ext 2584  ax-rep 4688  ax-sep 4698  ax-nul 4707  ax-pow 4759  ax-pr 4823  ax-un 6819  ax-cnex 9843  ax-resscn 9844  ax-1cn 9845  ax-icn 9846  ax-addcl 9847  ax-addrcl 9848  ax-mulcl 9849  ax-mulrcl 9850  ax-mulcom 9851  ax-addass 9852  ax-mulass 9853  ax-distr 9854  ax-i2m1 9855  ax-1ne0 9856  ax-1rid 9857  ax-rnegex 9858  ax-rrecex 9859  ax-cnre 9860  ax-pre-lttri 9861  ax-pre-lttrn 9862  ax-pre-ltadd 9863  ax-pre-mulgt0 9864  ax-pre-sup 9865
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2456  df-mo 2457  df-clab 2591  df-cleq 2597  df-clel 2600  df-nfc 2734  df-ne 2776  df-nel 2777  df-ral 2895  df-rex 2896  df-reu 2897  df-rmo 2898  df-rab 2899  df-v 3169  df-sbc 3397  df-csb 3494  df-dif 3537  df-un 3539  df-in 3541  df-ss 3548  df-pss 3550  df-nul 3869  df-if 4031  df-pw 4104  df-sn 4120  df-pr 4122  df-tp 4124  df-op 4126  df-uni 4362  df-iun 4446  df-br 4573  df-opab 4633  df-mpt 4634  df-tr 4670  df-eprel 4934  df-id 4938  df-po 4944  df-so 4945  df-fr 4982  df-we 4984  df-xp 5029  df-rel 5030  df-cnv 5031  df-co 5032  df-dm 5033  df-rn 5034  df-res 5035  df-ima 5036  df-pred 5578  df-ord 5624  df-on 5625  df-lim 5626  df-suc 5627  df-iota 5749  df-fun 5787  df-fn 5788  df-f 5789  df-f1 5790  df-fo 5791  df-f1o 5792  df-fv 5793  df-riota 6484  df-ov 6525  df-oprab 6526  df-mpt2 6527  df-om 6930  df-1st 7031  df-2nd 7032  df-wrecs 7266  df-recs 7327  df-rdg 7365  df-er 7601  df-map 7718  df-pm 7719  df-en 7814  df-dom 7815  df-sdom 7816  df-sup 8203  df-inf 8204  df-pnf 9927  df-mnf 9928  df-xr 9929  df-ltxr 9930  df-le 9931  df-sub 10114  df-neg 10115  df-div 10529  df-nn 10863  df-2 10921  df-n0 11135  df-z 11206  df-uz 11515  df-q 11616  df-rp 11660  df-xneg 11773  df-xadd 11774  df-xmul 11775  df-ico 12003  df-rest 15847  df-topgen 15868  df-psmet 19500  df-xmet 19501  df-met 19502  df-bl 19503  df-mopn 19504  df-fbas 19505  df-fg 19506  df-top 20458  df-bases 20459  df-topon 20460  df-ntr 20571  df-nei 20649  df-lm 20780  df-fil 21397  df-fm 21489  df-flim 21490  df-flf 21491  df-cfil 22774  df-cau 22775  df-cmet 22776
This theorem is referenced by:  iscmet3  22812  iscmet2  22813  bcthlem4  22844  minvecolem4a  26918  hlcompl  26956  heiborlem9  32586  bfplem1  32589
  Copyright terms: Public domain W3C validator