MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmetcusp Structured version   Visualization version   GIF version

Theorem cmetcusp 23053
Description: The uniform space generated by a complete metric is a complete uniform space. (Contributed by Thierry Arnoux, 5-Dec-2017.)
Assertion
Ref Expression
cmetcusp ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (toUnifSp‘(metUnif‘𝐷)) ∈ CUnifSp)

Proof of Theorem cmetcusp
Dummy variables 𝑥 𝑐 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmetmet 22987 . . . . 5 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
2 metxmet 22044 . . . . 5 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
3 xmetpsmet 22058 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ (PsMet‘𝑋))
41, 2, 33syl 18 . . . 4 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (PsMet‘𝑋))
54anim2i 592 . . 3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)))
6 metuust 22270 . . 3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (metUnif‘𝐷) ∈ (UnifOn‘𝑋))
7 eqid 2626 . . . 4 (toUnifSp‘(metUnif‘𝐷)) = (toUnifSp‘(metUnif‘𝐷))
87tususp 21981 . . 3 ((metUnif‘𝐷) ∈ (UnifOn‘𝑋) → (toUnifSp‘(metUnif‘𝐷)) ∈ UnifSp)
95, 6, 83syl 18 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (toUnifSp‘(metUnif‘𝐷)) ∈ UnifSp)
10 simpll 789 . . . . 5 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))) ∧ 𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷))))) → (𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)))
1110simprd 479 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))) ∧ 𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷))))) → 𝐷 ∈ (CMet‘𝑋))
121, 2syl 17 . . . . . . . 8 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
1312ad3antlr 766 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))) ∧ 𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷))))) → 𝐷 ∈ (∞Met‘𝑋))
147tusbas 21977 . . . . . . . . . . . 12 ((metUnif‘𝐷) ∈ (UnifOn‘𝑋) → 𝑋 = (Base‘(toUnifSp‘(metUnif‘𝐷))))
1514fveq2d 6154 . . . . . . . . . . 11 ((metUnif‘𝐷) ∈ (UnifOn‘𝑋) → (Fil‘𝑋) = (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷)))))
1615eleq2d 2689 . . . . . . . . . 10 ((metUnif‘𝐷) ∈ (UnifOn‘𝑋) → (𝑐 ∈ (Fil‘𝑋) ↔ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))))
175, 6, 163syl 18 . . . . . . . . 9 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (𝑐 ∈ (Fil‘𝑋) ↔ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))))
1817biimpar 502 . . . . . . . 8 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))) → 𝑐 ∈ (Fil‘𝑋))
1918adantr 481 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))) ∧ 𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷))))) → 𝑐 ∈ (Fil‘𝑋))
207tususs 21979 . . . . . . . . . . . . 13 ((metUnif‘𝐷) ∈ (UnifOn‘𝑋) → (metUnif‘𝐷) = (UnifSt‘(toUnifSp‘(metUnif‘𝐷))))
2120fveq2d 6154 . . . . . . . . . . . 12 ((metUnif‘𝐷) ∈ (UnifOn‘𝑋) → (CauFilu‘(metUnif‘𝐷)) = (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷)))))
225, 6, 213syl 18 . . . . . . . . . . 11 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (CauFilu‘(metUnif‘𝐷)) = (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷)))))
2322eleq2d 2689 . . . . . . . . . 10 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (𝑐 ∈ (CauFilu‘(metUnif‘𝐷)) ↔ 𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷))))))
2423biimpar 502 . . . . . . . . 9 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷))))) → 𝑐 ∈ (CauFilu‘(metUnif‘𝐷)))
2524adantlr 750 . . . . . . . 8 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))) ∧ 𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷))))) → 𝑐 ∈ (CauFilu‘(metUnif‘𝐷)))
26 cfilucfil2 22271 . . . . . . . . . 10 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑐 ∈ (CauFilu‘(metUnif‘𝐷)) ↔ (𝑐 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝑐 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
275, 26syl 17 . . . . . . . . 9 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (𝑐 ∈ (CauFilu‘(metUnif‘𝐷)) ↔ (𝑐 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝑐 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
2827simplbda 653 . . . . . . . 8 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (CauFilu‘(metUnif‘𝐷))) → ∀𝑥 ∈ ℝ+𝑦𝑐 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))
2910, 25, 28syl2anc 692 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))) ∧ 𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷))))) → ∀𝑥 ∈ ℝ+𝑦𝑐 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))
30 iscfil 22966 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → (𝑐 ∈ (CauFil‘𝐷) ↔ (𝑐 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝑐 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
3130biimpar 502 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑐 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝑐 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) → 𝑐 ∈ (CauFil‘𝐷))
3213, 19, 29, 31syl12anc 1321 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))) ∧ 𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷))))) → 𝑐 ∈ (CauFil‘𝐷))
33 eqid 2626 . . . . . . 7 (MetOpen‘𝐷) = (MetOpen‘𝐷)
3433cmetcvg 22986 . . . . . 6 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑐 ∈ (CauFil‘𝐷)) → ((MetOpen‘𝐷) fLim 𝑐) ≠ ∅)
3511, 32, 34syl2anc 692 . . . . 5 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))) ∧ 𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷))))) → ((MetOpen‘𝐷) fLim 𝑐) ≠ ∅)
36 eqid 2626 . . . . . . . . . . 11 (unifTop‘(metUnif‘𝐷)) = (unifTop‘(metUnif‘𝐷))
377, 36tustopn 21980 . . . . . . . . . 10 ((metUnif‘𝐷) ∈ (UnifOn‘𝑋) → (unifTop‘(metUnif‘𝐷)) = (TopOpen‘(toUnifSp‘(metUnif‘𝐷))))
385, 6, 373syl 18 . . . . . . . . 9 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (unifTop‘(metUnif‘𝐷)) = (TopOpen‘(toUnifSp‘(metUnif‘𝐷))))
3912anim2i 592 . . . . . . . . . 10 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋)))
40 xmetutop 22278 . . . . . . . . . 10 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋)) → (unifTop‘(metUnif‘𝐷)) = (MetOpen‘𝐷))
4139, 40syl 17 . . . . . . . . 9 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (unifTop‘(metUnif‘𝐷)) = (MetOpen‘𝐷))
4238, 41eqtr3d 2662 . . . . . . . 8 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (TopOpen‘(toUnifSp‘(metUnif‘𝐷))) = (MetOpen‘𝐷))
4342oveq1d 6620 . . . . . . 7 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → ((TopOpen‘(toUnifSp‘(metUnif‘𝐷))) fLim 𝑐) = ((MetOpen‘𝐷) fLim 𝑐))
4443neeq1d 2855 . . . . . 6 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (((TopOpen‘(toUnifSp‘(metUnif‘𝐷))) fLim 𝑐) ≠ ∅ ↔ ((MetOpen‘𝐷) fLim 𝑐) ≠ ∅))
4544biimpar 502 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ ((MetOpen‘𝐷) fLim 𝑐) ≠ ∅) → ((TopOpen‘(toUnifSp‘(metUnif‘𝐷))) fLim 𝑐) ≠ ∅)
4610, 35, 45syl2anc 692 . . . 4 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))) ∧ 𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷))))) → ((TopOpen‘(toUnifSp‘(metUnif‘𝐷))) fLim 𝑐) ≠ ∅)
4746ex 450 . . 3 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) ∧ 𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))) → (𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷)))) → ((TopOpen‘(toUnifSp‘(metUnif‘𝐷))) fLim 𝑐) ≠ ∅))
4847ralrimiva 2965 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → ∀𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))(𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷)))) → ((TopOpen‘(toUnifSp‘(metUnif‘𝐷))) fLim 𝑐) ≠ ∅))
49 iscusp 22008 . 2 ((toUnifSp‘(metUnif‘𝐷)) ∈ CUnifSp ↔ ((toUnifSp‘(metUnif‘𝐷)) ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘(toUnifSp‘(metUnif‘𝐷))))(𝑐 ∈ (CauFilu‘(UnifSt‘(toUnifSp‘(metUnif‘𝐷)))) → ((TopOpen‘(toUnifSp‘(metUnif‘𝐷))) fLim 𝑐) ≠ ∅)))
509, 48, 49sylanbrc 697 1 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (toUnifSp‘(metUnif‘𝐷)) ∈ CUnifSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1992  wne 2796  wral 2912  wrex 2913  wss 3560  c0 3896   × cxp 5077  cima 5082  cfv 5850  (class class class)co 6605  0cc0 9881  +crp 11776  [,)cico 12116  Basecbs 15776  TopOpenctopn 15998  PsMetcpsmet 19644  ∞Metcxmt 19645  Metcme 19646  fBascfbas 19648  MetOpencmopn 19650  metUnifcmetu 19651  Filcfil 21554   fLim cflim 21643  UnifOncust 21908  unifTopcutop 21939  UnifStcuss 21962  UnifSpcusp 21963  toUnifSpctus 21964  CauFiluccfilu 21995  CUnifSpccusp 22006  CauFilccfil 22953  CMetcms 22955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-map 7805  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-sup 8293  df-inf 8294  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-4 11026  df-5 11027  df-6 11028  df-7 11029  df-8 11030  df-9 11031  df-n0 11238  df-z 11323  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ico 12120  df-fz 12266  df-struct 15778  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-tset 15876  df-unif 15881  df-rest 15999  df-topn 16000  df-topgen 16020  df-psmet 19652  df-xmet 19653  df-met 19654  df-bl 19655  df-mopn 19656  df-fbas 19657  df-fg 19658  df-metu 19659  df-fil 21555  df-ust 21909  df-utop 21940  df-uss 21965  df-usp 21966  df-tus 21967  df-cfilu 21996  df-cusp 22007  df-cfil 22956  df-cmet 22958
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator