MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmetmet Structured version   Visualization version   GIF version

Theorem cmetmet 23024
Description: A complete metric space is a metric space. (Contributed by NM, 18-Dec-2006.) (Revised by Mario Carneiro, 29-Jan-2014.)
Assertion
Ref Expression
cmetmet (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))

Proof of Theorem cmetmet
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . . 3 (MetOpen‘𝐷) = (MetOpen‘𝐷)
21iscmet 23022 . 2 (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑓) ≠ ∅))
32simplbi 476 1 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1987  wne 2790  wral 2908  c0 3897  cfv 5857  (class class class)co 6615  Metcme 19672  MetOpencmopn 19676   fLim cflim 21678  CauFilccfil 22990  CMetcms 22992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-iota 5820  df-fun 5859  df-fv 5865  df-ov 6618  df-cmet 22995
This theorem is referenced by:  cmetmeti  23025  cmetcaulem  23026  cmetcau  23027  iscmet2  23032  cmetss  23053  bcthlem2  23062  bcthlem3  23063  bcthlem4  23064  bcthlem5  23065  bcth2  23067  bcth3  23068  cmetcusp1  23089  cmetcusp  23090  minveclem3  23140  ubthlem1  27614  ubthlem2  27615  hlmet  27639  fmcncfil  29801  heiborlem3  33283  heiborlem6  33286  heiborlem8  33288  heiborlem9  33289  heiborlem10  33290  heibor  33291  bfplem1  33292  bfplem2  33293  bfp  33294
  Copyright terms: Public domain W3C validator