Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmn32 Structured version   Visualization version   GIF version

Theorem cmn32 18132
 Description: Commutative/associative law for Abelian groups. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablcom.b 𝐵 = (Base‘𝐺)
ablcom.p + = (+g𝐺)
Assertion
Ref Expression
cmn32 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌))

Proof of Theorem cmn32
StepHypRef Expression
1 ablcom.b . 2 𝐵 = (Base‘𝐺)
2 ablcom.p . 2 + = (+g𝐺)
3 cmnmnd 18129 . . 3 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
43adantr 481 . 2 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐺 ∈ Mnd)
5 simpr1 1065 . 2 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
6 simpr2 1066 . 2 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
7 simpr3 1067 . 2 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
81, 2cmncom 18130 . . 3 ((𝐺 ∈ CMnd ∧ 𝑌𝐵𝑍𝐵) → (𝑌 + 𝑍) = (𝑍 + 𝑌))
983adant3r1 1271 . 2 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 + 𝑍) = (𝑍 + 𝑌))
101, 2, 4, 5, 6, 7, 9mnd32g 17226 1 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ‘cfv 5847  (class class class)co 6604  Basecbs 15781  +gcplusg 15862  Mndcmnd 17215  CMndccmn 18114 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-nul 4749 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-iota 5810  df-fv 5855  df-ov 6607  df-sgrp 17205  df-mnd 17216  df-cmn 18116 This theorem is referenced by:  abl32  18135
 Copyright terms: Public domain W3C validator