MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpcmet Structured version   Visualization version   GIF version

Theorem cmpcmet 23916
Description: A compact metric space is complete. One half of heibor 35093. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
relcmpcmet.1 𝐽 = (MetOpen‘𝐷)
relcmpcmet.2 (𝜑𝐷 ∈ (Met‘𝑋))
cmpcmet.3 (𝜑𝐽 ∈ Comp)
Assertion
Ref Expression
cmpcmet (𝜑𝐷 ∈ (CMet‘𝑋))

Proof of Theorem cmpcmet
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 relcmpcmet.1 . 2 𝐽 = (MetOpen‘𝐷)
2 relcmpcmet.2 . 2 (𝜑𝐷 ∈ (Met‘𝑋))
3 1rp 12387 . . 3 1 ∈ ℝ+
43a1i 11 . 2 (𝜑 → 1 ∈ ℝ+)
5 cmpcmet.3 . . . 4 (𝜑𝐽 ∈ Comp)
65adantr 483 . . 3 ((𝜑𝑥𝑋) → 𝐽 ∈ Comp)
7 metxmet 22938 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
82, 7syl 17 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
98adantr 483 . . . . 5 ((𝜑𝑥𝑋) → 𝐷 ∈ (∞Met‘𝑋))
101mopntop 23044 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
119, 10syl 17 . . . 4 ((𝜑𝑥𝑋) → 𝐽 ∈ Top)
12 simpr 487 . . . . . 6 ((𝜑𝑥𝑋) → 𝑥𝑋)
13 rpxr 12392 . . . . . . 7 (1 ∈ ℝ+ → 1 ∈ ℝ*)
143, 13mp1i 13 . . . . . 6 ((𝜑𝑥𝑋) → 1 ∈ ℝ*)
15 blssm 23022 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ 1 ∈ ℝ*) → (𝑥(ball‘𝐷)1) ⊆ 𝑋)
169, 12, 14, 15syl3anc 1367 . . . . 5 ((𝜑𝑥𝑋) → (𝑥(ball‘𝐷)1) ⊆ 𝑋)
171mopnuni 23045 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
189, 17syl 17 . . . . 5 ((𝜑𝑥𝑋) → 𝑋 = 𝐽)
1916, 18sseqtrd 4006 . . . 4 ((𝜑𝑥𝑋) → (𝑥(ball‘𝐷)1) ⊆ 𝐽)
20 eqid 2821 . . . . 5 𝐽 = 𝐽
2120clscld 21649 . . . 4 ((𝐽 ∈ Top ∧ (𝑥(ball‘𝐷)1) ⊆ 𝐽) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘𝐽))
2211, 19, 21syl2anc 586 . . 3 ((𝜑𝑥𝑋) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘𝐽))
23 cmpcld 22004 . . 3 ((𝐽 ∈ Comp ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘𝐽)) → (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)1))) ∈ Comp)
246, 22, 23syl2anc 586 . 2 ((𝜑𝑥𝑋) → (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)1))) ∈ Comp)
251, 2, 4, 24relcmpcmet 23915 1 (𝜑𝐷 ∈ (CMet‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wss 3935   cuni 4831  cfv 6349  (class class class)co 7150  1c1 10532  *cxr 10668  +crp 12383  t crest 16688  ∞Metcxmet 20524  Metcmet 20525  ballcbl 20526  MetOpencmopn 20529  Topctop 21495  Clsdccld 21618  clsccl 21620  Compccmp 21988  CMetccmet 23851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ico 12738  df-rest 16690  df-topgen 16711  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-fbas 20536  df-fg 20537  df-top 21496  df-topon 21513  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-cmp 21989  df-fil 22448  df-flim 22541  df-fcls 22543  df-cfil 23852  df-cmet 23854
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator