Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmpcref Structured version   Visualization version   GIF version

Theorem cmpcref 30147
Description: Equivalent definition of compact space in terms of open cover refinements. Compact spaces are topologies with finite open cover refinements. (Contributed by Thierry Arnoux, 7-Jan-2020.)
Assertion
Ref Expression
cmpcref Comp = CovHasRefFin

Proof of Theorem cmpcref
Dummy variables 𝑓 𝑗 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 809 . . . . . . . . . . . . . . 15 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥 ∈ (𝒫 𝑦 ∩ Fin))
2 elin 3904 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 𝑦 ∩ Fin) ↔ (𝑥 ∈ 𝒫 𝑦𝑥 ∈ Fin))
31, 2sylib 208 . . . . . . . . . . . . . 14 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → (𝑥 ∈ 𝒫 𝑦𝑥 ∈ Fin))
43simpld 477 . . . . . . . . . . . . 13 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥 ∈ 𝒫 𝑦)
5 elpwi 4276 . . . . . . . . . . . . 13 (𝑥 ∈ 𝒫 𝑦𝑥𝑦)
64, 5syl 17 . . . . . . . . . . . 12 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥𝑦)
7 elpwi 4276 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 𝑗𝑦𝑗)
87ad4antlr 773 . . . . . . . . . . . 12 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑦𝑗)
96, 8sstrd 3719 . . . . . . . . . . 11 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥𝑗)
10 selpw 4273 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 𝑗𝑥𝑗)
119, 10sylibr 224 . . . . . . . . . 10 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥 ∈ 𝒫 𝑗)
123simprd 482 . . . . . . . . . 10 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥 ∈ Fin)
1311, 12elind 3906 . . . . . . . . 9 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥 ∈ (𝒫 𝑗 ∩ Fin))
14 simpr 479 . . . . . . . . . . 11 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑗 = 𝑥)
15 simpllr 817 . . . . . . . . . . 11 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑗 = 𝑦)
1614, 15eqtr3d 2760 . . . . . . . . . 10 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥 = 𝑦)
17 eqid 2724 . . . . . . . . . . 11 𝑥 = 𝑥
18 eqid 2724 . . . . . . . . . . 11 𝑦 = 𝑦
1917, 18ssref 21438 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 𝑗𝑥𝑦 𝑥 = 𝑦) → 𝑥Ref𝑦)
2011, 6, 16, 19syl3anc 1439 . . . . . . . . 9 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥Ref𝑦)
21 breq1 4763 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑧Ref𝑦𝑥Ref𝑦))
2221rspcev 3413 . . . . . . . . 9 ((𝑥 ∈ (𝒫 𝑗 ∩ Fin) ∧ 𝑥Ref𝑦) → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)
2313, 20, 22syl2anc 696 . . . . . . . 8 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)
2423r19.29an 3179 . . . . . . 7 ((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥) → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)
25 simplr 809 . . . . . . . . . 10 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → 𝑧 ∈ (𝒫 𝑗 ∩ Fin))
26 vex 3307 . . . . . . . . . . . . 13 𝑧 ∈ V
27 eqid 2724 . . . . . . . . . . . . . 14 𝑧 = 𝑧
2827, 18isref 21435 . . . . . . . . . . . . 13 (𝑧 ∈ V → (𝑧Ref𝑦 ↔ ( 𝑦 = 𝑧 ∧ ∀𝑢𝑧𝑣𝑦 𝑢𝑣)))
2926, 28ax-mp 5 . . . . . . . . . . . 12 (𝑧Ref𝑦 ↔ ( 𝑦 = 𝑧 ∧ ∀𝑢𝑧𝑣𝑦 𝑢𝑣))
3029simprbi 483 . . . . . . . . . . 11 (𝑧Ref𝑦 → ∀𝑢𝑧𝑣𝑦 𝑢𝑣)
3130adantl 473 . . . . . . . . . 10 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → ∀𝑢𝑧𝑣𝑦 𝑢𝑣)
32 sseq2 3733 . . . . . . . . . . 11 (𝑣 = (𝑓𝑢) → (𝑢𝑣𝑢 ⊆ (𝑓𝑢)))
3332ac6sg 9423 . . . . . . . . . 10 (𝑧 ∈ (𝒫 𝑗 ∩ Fin) → (∀𝑢𝑧𝑣𝑦 𝑢𝑣 → ∃𝑓(𝑓:𝑧𝑦 ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢))))
3425, 31, 33sylc 65 . . . . . . . . 9 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → ∃𝑓(𝑓:𝑧𝑦 ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)))
35 simplr 809 . . . . . . . . . . . . . . 15 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑓:𝑧𝑦)
36 frn 6166 . . . . . . . . . . . . . . 15 (𝑓:𝑧𝑦 → ran 𝑓𝑦)
3735, 36syl 17 . . . . . . . . . . . . . 14 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ran 𝑓𝑦)
38 vex 3307 . . . . . . . . . . . . . . . 16 𝑓 ∈ V
3938rnex 7217 . . . . . . . . . . . . . . 15 ran 𝑓 ∈ V
4039elpw 4272 . . . . . . . . . . . . . 14 (ran 𝑓 ∈ 𝒫 𝑦 ↔ ran 𝑓𝑦)
4137, 40sylibr 224 . . . . . . . . . . . . 13 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ran 𝑓 ∈ 𝒫 𝑦)
42 ffn 6158 . . . . . . . . . . . . . . . 16 (𝑓:𝑧𝑦𝑓 Fn 𝑧)
4335, 42syl 17 . . . . . . . . . . . . . . 15 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑓 Fn 𝑧)
44 elin 3904 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (𝒫 𝑗 ∩ Fin) ↔ (𝑧 ∈ 𝒫 𝑗𝑧 ∈ Fin))
4544simprbi 483 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝒫 𝑗 ∩ Fin) → 𝑧 ∈ Fin)
4645ad4antlr 773 . . . . . . . . . . . . . . 15 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑧 ∈ Fin)
47 fnfi 8354 . . . . . . . . . . . . . . 15 ((𝑓 Fn 𝑧𝑧 ∈ Fin) → 𝑓 ∈ Fin)
4843, 46, 47syl2anc 696 . . . . . . . . . . . . . 14 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑓 ∈ Fin)
49 rnfi 8365 . . . . . . . . . . . . . 14 (𝑓 ∈ Fin → ran 𝑓 ∈ Fin)
5048, 49syl 17 . . . . . . . . . . . . 13 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ran 𝑓 ∈ Fin)
5141, 50elind 3906 . . . . . . . . . . . 12 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ran 𝑓 ∈ (𝒫 𝑦 ∩ Fin))
52 simp-5r 831 . . . . . . . . . . . . 13 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑗 = 𝑦)
5327, 18refbas 21436 . . . . . . . . . . . . . . . 16 (𝑧Ref𝑦 𝑦 = 𝑧)
5453ad3antlr 769 . . . . . . . . . . . . . . 15 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑦 = 𝑧)
55 nfv 1956 . . . . . . . . . . . . . . . . . . 19 𝑢(((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦)
56 nfra1 3043 . . . . . . . . . . . . . . . . . . 19 𝑢𝑢𝑧 𝑢 ⊆ (𝑓𝑢)
5755, 56nfan 1941 . . . . . . . . . . . . . . . . . 18 𝑢((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢))
58 rspa 3032 . . . . . . . . . . . . . . . . . . . . 21 ((∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢) ∧ 𝑢𝑧) → 𝑢 ⊆ (𝑓𝑢))
5958adantll 752 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) ∧ 𝑢𝑧) → 𝑢 ⊆ (𝑓𝑢))
6059sseld 3708 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) ∧ 𝑢𝑧) → (𝑥𝑢𝑥 ∈ (𝑓𝑢)))
6160ex 449 . . . . . . . . . . . . . . . . . 18 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → (𝑢𝑧 → (𝑥𝑢𝑥 ∈ (𝑓𝑢))))
6257, 61reximdai 3114 . . . . . . . . . . . . . . . . 17 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → (∃𝑢𝑧 𝑥𝑢 → ∃𝑢𝑧 𝑥 ∈ (𝑓𝑢)))
63 eluni2 4548 . . . . . . . . . . . . . . . . . 18 (𝑥 𝑧 ↔ ∃𝑢𝑧 𝑥𝑢)
6463a1i 11 . . . . . . . . . . . . . . . . 17 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → (𝑥 𝑧 ↔ ∃𝑢𝑧 𝑥𝑢))
65 fnunirn 6626 . . . . . . . . . . . . . . . . . 18 (𝑓 Fn 𝑧 → (𝑥 ran 𝑓 ↔ ∃𝑢𝑧 𝑥 ∈ (𝑓𝑢)))
6643, 65syl 17 . . . . . . . . . . . . . . . . 17 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → (𝑥 ran 𝑓 ↔ ∃𝑢𝑧 𝑥 ∈ (𝑓𝑢)))
6762, 64, 663imtr4d 283 . . . . . . . . . . . . . . . 16 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → (𝑥 𝑧𝑥 ran 𝑓))
6867ssrdv 3715 . . . . . . . . . . . . . . 15 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑧 ran 𝑓)
6954, 68eqsstrd 3745 . . . . . . . . . . . . . 14 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑦 ran 𝑓)
7037unissd 4570 . . . . . . . . . . . . . 14 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ran 𝑓 𝑦)
7169, 70eqssd 3726 . . . . . . . . . . . . 13 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑦 = ran 𝑓)
7252, 71eqtrd 2758 . . . . . . . . . . . 12 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑗 = ran 𝑓)
73 unieq 4552 . . . . . . . . . . . . . 14 (𝑥 = ran 𝑓 𝑥 = ran 𝑓)
7473eqeq2d 2734 . . . . . . . . . . . . 13 (𝑥 = ran 𝑓 → ( 𝑗 = 𝑥 𝑗 = ran 𝑓))
7574rspcev 3413 . . . . . . . . . . . 12 ((ran 𝑓 ∈ (𝒫 𝑦 ∩ Fin) ∧ 𝑗 = ran 𝑓) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥)
7651, 72, 75syl2anc 696 . . . . . . . . . . 11 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥)
7776expl 649 . . . . . . . . . 10 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → ((𝑓:𝑧𝑦 ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥))
7877exlimdv 1974 . . . . . . . . 9 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → (∃𝑓(𝑓:𝑧𝑦 ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥))
7934, 78mpd 15 . . . . . . . 8 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥)
8079r19.29an 3179 . . . . . . 7 ((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥)
8124, 80impbida 913 . . . . . 6 (((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) → (∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥 ↔ ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦))
8281pm5.74da 725 . . . . 5 ((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) → (( 𝑗 = 𝑦 → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥) ↔ ( 𝑗 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)))
8382ralbidva 3087 . . . 4 (𝑗 ∈ Top → (∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥) ↔ ∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)))
8483pm5.32i 672 . . 3 ((𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥)) ↔ (𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)))
85 eqid 2724 . . . 4 𝑗 = 𝑗
8685iscmp 21314 . . 3 (𝑗 ∈ Comp ↔ (𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥)))
8785iscref 30141 . . 3 (𝑗 ∈ CovHasRefFin ↔ (𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)))
8884, 86, 873bitr4i 292 . 2 (𝑗 ∈ Comp ↔ 𝑗 ∈ CovHasRefFin)
8988eqriv 2721 1 Comp = CovHasRefFin
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1596  wex 1817  wcel 2103  wral 3014  wrex 3015  Vcvv 3304  cin 3679  wss 3680  𝒫 cpw 4266   cuni 4544   class class class wbr 4760  ran crn 5219   Fn wfn 5996  wf 5997  cfv 6001  Fincfn 8072  Topctop 20821  Compccmp 21312  Refcref 21428  CovHasRefccref 30139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-reg 8613  ax-inf2 8651  ax-ac2 9398
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-iin 4631  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-oadd 7684  df-er 7862  df-en 8073  df-dom 8074  df-fin 8076  df-r1 8740  df-rank 8741  df-card 8878  df-ac 9052  df-cmp 21313  df-ref 21431  df-cref 30140
This theorem is referenced by:  cmpfiref  30148  cmppcmp  30155
  Copyright terms: Public domain W3C validator