MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpfii Structured version   Visualization version   GIF version

Theorem cmpfii 21122
Description: In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
cmpfii ((𝐽 ∈ Comp ∧ 𝑋 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑋)) → 𝑋 ≠ ∅)

Proof of Theorem cmpfii
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvex 6158 . . . . 5 (Clsd‘𝐽) ∈ V
21elpw2 4788 . . . 4 (𝑋 ∈ 𝒫 (Clsd‘𝐽) ↔ 𝑋 ⊆ (Clsd‘𝐽))
32biimpri 218 . . 3 (𝑋 ⊆ (Clsd‘𝐽) → 𝑋 ∈ 𝒫 (Clsd‘𝐽))
4 cmptop 21108 . . . . 5 (𝐽 ∈ Comp → 𝐽 ∈ Top)
5 cmpfi 21121 . . . . 5 (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)))
64, 5syl 17 . . . 4 (𝐽 ∈ Comp → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)))
76ibi 256 . . 3 (𝐽 ∈ Comp → ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅))
8 fveq2 6148 . . . . . . 7 (𝑥 = 𝑋 → (fi‘𝑥) = (fi‘𝑋))
98eleq2d 2684 . . . . . 6 (𝑥 = 𝑋 → (∅ ∈ (fi‘𝑥) ↔ ∅ ∈ (fi‘𝑋)))
109notbid 308 . . . . 5 (𝑥 = 𝑋 → (¬ ∅ ∈ (fi‘𝑥) ↔ ¬ ∅ ∈ (fi‘𝑋)))
11 inteq 4443 . . . . . 6 (𝑥 = 𝑋 𝑥 = 𝑋)
1211neeq1d 2849 . . . . 5 (𝑥 = 𝑋 → ( 𝑥 ≠ ∅ ↔ 𝑋 ≠ ∅))
1310, 12imbi12d 334 . . . 4 (𝑥 = 𝑋 → ((¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅) ↔ (¬ ∅ ∈ (fi‘𝑋) → 𝑋 ≠ ∅)))
1413rspcva 3293 . . 3 ((𝑋 ∈ 𝒫 (Clsd‘𝐽) ∧ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)) → (¬ ∅ ∈ (fi‘𝑋) → 𝑋 ≠ ∅))
153, 7, 14syl2anr 495 . 2 ((𝐽 ∈ Comp ∧ 𝑋 ⊆ (Clsd‘𝐽)) → (¬ ∅ ∈ (fi‘𝑋) → 𝑋 ≠ ∅))
16153impia 1258 1 ((𝐽 ∈ Comp ∧ 𝑋 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑋)) → 𝑋 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  wss 3555  c0 3891  𝒫 cpw 4130   cint 4440  cfv 5847  ficfi 8260  Topctop 20617  Clsdccld 20730  Compccmp 21099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fi 8261  df-top 20621  df-cld 20733  df-cmp 21100
This theorem is referenced by:  fclscmpi  21743  cmpfiiin  36740
  Copyright terms: Public domain W3C validator