Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmpfiiin Structured version   Visualization version   GIF version

Theorem cmpfiiin 36779
 Description: In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypotheses
Ref Expression
cmpfiiin.x 𝑋 = 𝐽
cmpfiiin.j (𝜑𝐽 ∈ Comp)
cmpfiiin.s ((𝜑𝑘𝐼) → 𝑆 ∈ (Clsd‘𝐽))
cmpfiiin.z ((𝜑 ∧ (𝑙𝐼𝑙 ∈ Fin)) → (𝑋 𝑘𝑙 𝑆) ≠ ∅)
Assertion
Ref Expression
cmpfiiin (𝜑 → (𝑋 𝑘𝐼 𝑆) ≠ ∅)
Distinct variable groups:   𝜑,𝑘,𝑙   𝑘,𝐼,𝑙   𝑘,𝐽,𝑙   𝑆,𝑙   𝑘,𝑋,𝑙
Allowed substitution hint:   𝑆(𝑘)

Proof of Theorem cmpfiiin
StepHypRef Expression
1 cmpfiiin.j . . . . 5 (𝜑𝐽 ∈ Comp)
2 cmptop 21138 . . . . 5 (𝐽 ∈ Comp → 𝐽 ∈ Top)
31, 2syl 17 . . . 4 (𝜑𝐽 ∈ Top)
4 cmpfiiin.x . . . . 5 𝑋 = 𝐽
54topcld 20779 . . . 4 (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))
63, 5syl 17 . . 3 (𝜑𝑋 ∈ (Clsd‘𝐽))
7 cmpfiiin.s . . . . 5 ((𝜑𝑘𝐼) → 𝑆 ∈ (Clsd‘𝐽))
84cldss 20773 . . . . 5 (𝑆 ∈ (Clsd‘𝐽) → 𝑆𝑋)
97, 8syl 17 . . . 4 ((𝜑𝑘𝐼) → 𝑆𝑋)
109ralrimiva 2962 . . 3 (𝜑 → ∀𝑘𝐼 𝑆𝑋)
11 riinint 5352 . . 3 ((𝑋 ∈ (Clsd‘𝐽) ∧ ∀𝑘𝐼 𝑆𝑋) → (𝑋 𝑘𝐼 𝑆) = ({𝑋} ∪ ran (𝑘𝐼𝑆)))
126, 10, 11syl2anc 692 . 2 (𝜑 → (𝑋 𝑘𝐼 𝑆) = ({𝑋} ∪ ran (𝑘𝐼𝑆)))
136snssd 4316 . . . 4 (𝜑 → {𝑋} ⊆ (Clsd‘𝐽))
14 eqid 2621 . . . . . 6 (𝑘𝐼𝑆) = (𝑘𝐼𝑆)
157, 14fmptd 6351 . . . . 5 (𝜑 → (𝑘𝐼𝑆):𝐼⟶(Clsd‘𝐽))
16 frn 6020 . . . . 5 ((𝑘𝐼𝑆):𝐼⟶(Clsd‘𝐽) → ran (𝑘𝐼𝑆) ⊆ (Clsd‘𝐽))
1715, 16syl 17 . . . 4 (𝜑 → ran (𝑘𝐼𝑆) ⊆ (Clsd‘𝐽))
1813, 17unssd 3773 . . 3 (𝜑 → ({𝑋} ∪ ran (𝑘𝐼𝑆)) ⊆ (Clsd‘𝐽))
19 elin 3780 . . . . . . 7 (𝑙 ∈ (𝒫 𝐼 ∩ Fin) ↔ (𝑙 ∈ 𝒫 𝐼𝑙 ∈ Fin))
20 elpwi 4146 . . . . . . . 8 (𝑙 ∈ 𝒫 𝐼𝑙𝐼)
2120anim1i 591 . . . . . . 7 ((𝑙 ∈ 𝒫 𝐼𝑙 ∈ Fin) → (𝑙𝐼𝑙 ∈ Fin))
2219, 21sylbi 207 . . . . . 6 (𝑙 ∈ (𝒫 𝐼 ∩ Fin) → (𝑙𝐼𝑙 ∈ Fin))
23 cmpfiiin.z . . . . . . 7 ((𝜑 ∧ (𝑙𝐼𝑙 ∈ Fin)) → (𝑋 𝑘𝑙 𝑆) ≠ ∅)
24 nesym 2846 . . . . . . 7 ((𝑋 𝑘𝑙 𝑆) ≠ ∅ ↔ ¬ ∅ = (𝑋 𝑘𝑙 𝑆))
2523, 24sylib 208 . . . . . 6 ((𝜑 ∧ (𝑙𝐼𝑙 ∈ Fin)) → ¬ ∅ = (𝑋 𝑘𝑙 𝑆))
2622, 25sylan2 491 . . . . 5 ((𝜑𝑙 ∈ (𝒫 𝐼 ∩ Fin)) → ¬ ∅ = (𝑋 𝑘𝑙 𝑆))
2726nrexdv 2997 . . . 4 (𝜑 → ¬ ∃𝑙 ∈ (𝒫 𝐼 ∩ Fin)∅ = (𝑋 𝑘𝑙 𝑆))
28 elrfirn2 36778 . . . . 5 ((𝑋 ∈ (Clsd‘𝐽) ∧ ∀𝑘𝐼 𝑆𝑋) → (∅ ∈ (fi‘({𝑋} ∪ ran (𝑘𝐼𝑆))) ↔ ∃𝑙 ∈ (𝒫 𝐼 ∩ Fin)∅ = (𝑋 𝑘𝑙 𝑆)))
296, 10, 28syl2anc 692 . . . 4 (𝜑 → (∅ ∈ (fi‘({𝑋} ∪ ran (𝑘𝐼𝑆))) ↔ ∃𝑙 ∈ (𝒫 𝐼 ∩ Fin)∅ = (𝑋 𝑘𝑙 𝑆)))
3027, 29mtbird 315 . . 3 (𝜑 → ¬ ∅ ∈ (fi‘({𝑋} ∪ ran (𝑘𝐼𝑆))))
31 cmpfii 21152 . . 3 ((𝐽 ∈ Comp ∧ ({𝑋} ∪ ran (𝑘𝐼𝑆)) ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘({𝑋} ∪ ran (𝑘𝐼𝑆)))) → ({𝑋} ∪ ran (𝑘𝐼𝑆)) ≠ ∅)
321, 18, 30, 31syl3anc 1323 . 2 (𝜑 ({𝑋} ∪ ran (𝑘𝐼𝑆)) ≠ ∅)
3312, 32eqnetrd 2857 1 (𝜑 → (𝑋 𝑘𝐼 𝑆) ≠ ∅)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∀wral 2908  ∃wrex 2909   ∪ cun 3558   ∩ cin 3559   ⊆ wss 3560  ∅c0 3897  𝒫 cpw 4136  {csn 4155  ∪ cuni 4409  ∩ cint 4447  ∩ ciin 4493   ↦ cmpt 4683  ran crn 5085  ⟶wf 5853  ‘cfv 5857  Fincfn 7915  ficfi 8276  Topctop 20638  Clsdccld 20760  Compccmp 21129 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-map 7819  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-fi 8277  df-top 20639  df-cld 20763  df-cmp 21130 This theorem is referenced by:  kelac1  37152
 Copyright terms: Public domain W3C validator