MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmphaushmeo Structured version   Visualization version   GIF version

Theorem cmphaushmeo 21352
Description: A continuous bijection from a compact space to a Hausdorff space is a homeomorphism. (Contributed by Mario Carneiro, 17-Feb-2015.)
Hypotheses
Ref Expression
cmphaushmeo.1 𝑋 = 𝐽
cmphaushmeo.2 𝑌 = 𝐾
Assertion
Ref Expression
cmphaushmeo ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹:𝑋1-1-onto𝑌))

Proof of Theorem cmphaushmeo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cmphaushmeo.1 . . 3 𝑋 = 𝐽
2 cmphaushmeo.2 . . 3 𝑌 = 𝐾
31, 2hmeof1o 21316 . 2 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋1-1-onto𝑌)
4 f1ocnv 6044 . . . . . . . 8 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
5 f1of 6032 . . . . . . . 8 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
64, 5syl 17 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌𝑋)
76a1i 11 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋1-1-onto𝑌𝐹:𝑌𝑋))
8 f1orel 6035 . . . . . . . . . . . 12 (𝐹:𝑋1-1-onto𝑌 → Rel 𝐹)
98ad2antll 760 . . . . . . . . . . 11 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → Rel 𝐹)
10 dfrel2 5485 . . . . . . . . . . 11 (Rel 𝐹𝐹 = 𝐹)
119, 10sylib 206 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → 𝐹 = 𝐹)
1211imaeq1d 5368 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → (𝐹𝑥) = (𝐹𝑥))
13 simp2 1054 . . . . . . . . . . 11 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Haus)
1413adantr 479 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → 𝐾 ∈ Haus)
15 imassrn 5380 . . . . . . . . . . 11 (𝐹𝑥) ⊆ ran 𝐹
16 f1ofo 6039 . . . . . . . . . . . . 13 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋onto𝑌)
1716ad2antll 760 . . . . . . . . . . . 12 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → 𝐹:𝑋onto𝑌)
18 forn 6013 . . . . . . . . . . . 12 (𝐹:𝑋onto𝑌 → ran 𝐹 = 𝑌)
1917, 18syl 17 . . . . . . . . . . 11 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → ran 𝐹 = 𝑌)
2015, 19syl5sseq 3612 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → (𝐹𝑥) ⊆ 𝑌)
21 simpl3 1058 . . . . . . . . . . 11 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → 𝐹 ∈ (𝐽 Cn 𝐾))
22 simp1 1053 . . . . . . . . . . . . 13 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Comp)
2322adantr 479 . . . . . . . . . . . 12 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → 𝐽 ∈ Comp)
24 simprl 789 . . . . . . . . . . . 12 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → 𝑥 ∈ (Clsd‘𝐽))
25 cmpcld 20954 . . . . . . . . . . . 12 ((𝐽 ∈ Comp ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝐽t 𝑥) ∈ Comp)
2623, 24, 25syl2anc 690 . . . . . . . . . . 11 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → (𝐽t 𝑥) ∈ Comp)
27 imacmp 20949 . . . . . . . . . . 11 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝑥) ∈ Comp) → (𝐾t (𝐹𝑥)) ∈ Comp)
2821, 26, 27syl2anc 690 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → (𝐾t (𝐹𝑥)) ∈ Comp)
292hauscmp 20959 . . . . . . . . . 10 ((𝐾 ∈ Haus ∧ (𝐹𝑥) ⊆ 𝑌 ∧ (𝐾t (𝐹𝑥)) ∈ Comp) → (𝐹𝑥) ∈ (Clsd‘𝐾))
3014, 20, 28, 29syl3anc 1317 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → (𝐹𝑥) ∈ (Clsd‘𝐾))
3112, 30eqeltrd 2684 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝐹:𝑋1-1-onto𝑌)) → (𝐹𝑥) ∈ (Clsd‘𝐾))
3231expr 640 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝐹:𝑋1-1-onto𝑌 → (𝐹𝑥) ∈ (Clsd‘𝐾)))
3332ralrimdva 2948 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋1-1-onto𝑌 → ∀𝑥 ∈ (Clsd‘𝐽)(𝐹𝑥) ∈ (Clsd‘𝐾)))
347, 33jcad 553 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋1-1-onto𝑌 → (𝐹:𝑌𝑋 ∧ ∀𝑥 ∈ (Clsd‘𝐽)(𝐹𝑥) ∈ (Clsd‘𝐾))))
35 haustop 20884 . . . . . . . 8 (𝐾 ∈ Haus → 𝐾 ∈ Top)
3613, 35syl 17 . . . . . . 7 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Top)
372toptopon 20487 . . . . . . 7 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
3836, 37sylib 206 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ (TopOn‘𝑌))
39 cmptop 20947 . . . . . . . 8 (𝐽 ∈ Comp → 𝐽 ∈ Top)
4022, 39syl 17 . . . . . . 7 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top)
411toptopon 20487 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
4240, 41sylib 206 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ (TopOn‘𝑋))
43 iscncl 20822 . . . . . 6 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝐹 ∈ (𝐾 Cn 𝐽) ↔ (𝐹:𝑌𝑋 ∧ ∀𝑥 ∈ (Clsd‘𝐽)(𝐹𝑥) ∈ (Clsd‘𝐾))))
4438, 42, 43syl2anc 690 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∈ (𝐾 Cn 𝐽) ↔ (𝐹:𝑌𝑋 ∧ ∀𝑥 ∈ (Clsd‘𝐽)(𝐹𝑥) ∈ (Clsd‘𝐾))))
4534, 44sylibrd 247 . . . 4 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝐾 Cn 𝐽)))
46 simp3 1055 . . . 4 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝐽 Cn 𝐾))
4745, 46jctild 563 . . 3 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋1-1-onto𝑌 → (𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽))))
48 ishmeo 21311 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽)))
4947, 48syl6ibr 240 . 2 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝐽Homeo𝐾)))
503, 49impbid2 214 1 ((𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹:𝑋1-1-onto𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wral 2892  wss 3536   cuni 4363  ccnv 5024  ran crn 5026  cima 5028  Rel wrel 5030  wf 5783  ontowfo 5785  1-1-ontowf1o 5786  cfv 5787  (class class class)co 6524  t crest 15847  Topctop 20456  TopOnctopon 20457  Clsdccld 20569   Cn ccn 20777  Hauscha 20861  Compccmp 20938  Homeochmeo 21305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-ral 2897  df-rex 2898  df-reu 2899  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-int 4402  df-iun 4448  df-iin 4449  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-om 6932  df-1st 7033  df-2nd 7034  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-1o 7421  df-oadd 7425  df-er 7603  df-map 7720  df-en 7816  df-dom 7817  df-fin 7819  df-fi 8174  df-rest 15849  df-topgen 15870  df-top 20460  df-bases 20461  df-topon 20462  df-cld 20572  df-cls 20574  df-cn 20780  df-haus 20868  df-cmp 20939  df-hmeo 21307
This theorem is referenced by:  cncfcnvcn  22460
  Copyright terms: Public domain W3C validator