MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpkgen Structured version   Visualization version   GIF version

Theorem cmpkgen 21294
Description: A compact space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
cmpkgen (𝐽 ∈ Comp → 𝐽 ∈ ran 𝑘Gen)

Proof of Theorem cmpkgen
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . 2 𝐽 = 𝐽
2 cmptop 21138 . 2 (𝐽 ∈ Comp → 𝐽 ∈ Top)
32adantr 481 . . . 4 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → 𝐽 ∈ Top)
41topopn 20651 . . . . 5 (𝐽 ∈ Top → 𝐽𝐽)
53, 4syl 17 . . . 4 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → 𝐽𝐽)
6 simpr 477 . . . . 5 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → 𝑥 𝐽)
76snssd 4316 . . . 4 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → {𝑥} ⊆ 𝐽)
8 opnneiss 20862 . . . 4 ((𝐽 ∈ Top ∧ 𝐽𝐽 ∧ {𝑥} ⊆ 𝐽) → 𝐽 ∈ ((nei‘𝐽)‘{𝑥}))
93, 5, 7, 8syl3anc 1323 . . 3 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → 𝐽 ∈ ((nei‘𝐽)‘{𝑥}))
101restid 16034 . . . . 5 (𝐽 ∈ Top → (𝐽t 𝐽) = 𝐽)
113, 10syl 17 . . . 4 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → (𝐽t 𝐽) = 𝐽)
12 simpl 473 . . . 4 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → 𝐽 ∈ Comp)
1311, 12eqeltrd 2698 . . 3 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → (𝐽t 𝐽) ∈ Comp)
14 oveq2 6623 . . . . 5 (𝑘 = 𝐽 → (𝐽t 𝑘) = (𝐽t 𝐽))
1514eleq1d 2683 . . . 4 (𝑘 = 𝐽 → ((𝐽t 𝑘) ∈ Comp ↔ (𝐽t 𝐽) ∈ Comp))
1615rspcev 3299 . . 3 (( 𝐽 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽t 𝐽) ∈ Comp) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽t 𝑘) ∈ Comp)
179, 13, 16syl2anc 692 . 2 ((𝐽 ∈ Comp ∧ 𝑥 𝐽) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽t 𝑘) ∈ Comp)
181, 2, 17llycmpkgen2 21293 1 (𝐽 ∈ Comp → 𝐽 ∈ ran 𝑘Gen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wrex 2909  wss 3560  {csn 4155   cuni 4409  ran crn 5085  cfv 5857  (class class class)co 6615  t crest 16021  Topctop 20638  neicnei 20841  Compccmp 21129  𝑘Genckgen 21276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-oadd 7524  df-er 7702  df-en 7916  df-fin 7919  df-fi 8277  df-rest 16023  df-topgen 16044  df-top 20639  df-topon 20656  df-bases 20690  df-ntr 20764  df-nei 20842  df-cmp 21130  df-kgen 21277
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator