Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmtfvalN Structured version   Visualization version   GIF version

Theorem cmtfvalN 36226
Description: Value of commutes relation. (Contributed by NM, 6-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmtfval.b 𝐵 = (Base‘𝐾)
cmtfval.j = (join‘𝐾)
cmtfval.m = (meet‘𝐾)
cmtfval.o = (oc‘𝐾)
cmtfval.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
cmtfvalN (𝐾𝐴𝐶 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))})
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑥,𝑦)   (𝑥,𝑦)   (𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem cmtfvalN
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 elex 3510 . 2 (𝐾𝐴𝐾 ∈ V)
2 cmtfval.c . . 3 𝐶 = (cm‘𝐾)
3 fveq2 6663 . . . . . . . 8 (𝑝 = 𝐾 → (Base‘𝑝) = (Base‘𝐾))
4 cmtfval.b . . . . . . . 8 𝐵 = (Base‘𝐾)
53, 4syl6eqr 2871 . . . . . . 7 (𝑝 = 𝐾 → (Base‘𝑝) = 𝐵)
65eleq2d 2895 . . . . . 6 (𝑝 = 𝐾 → (𝑥 ∈ (Base‘𝑝) ↔ 𝑥𝐵))
75eleq2d 2895 . . . . . 6 (𝑝 = 𝐾 → (𝑦 ∈ (Base‘𝑝) ↔ 𝑦𝐵))
8 fveq2 6663 . . . . . . . . 9 (𝑝 = 𝐾 → (join‘𝑝) = (join‘𝐾))
9 cmtfval.j . . . . . . . . 9 = (join‘𝐾)
108, 9syl6eqr 2871 . . . . . . . 8 (𝑝 = 𝐾 → (join‘𝑝) = )
11 fveq2 6663 . . . . . . . . . 10 (𝑝 = 𝐾 → (meet‘𝑝) = (meet‘𝐾))
12 cmtfval.m . . . . . . . . . 10 = (meet‘𝐾)
1311, 12syl6eqr 2871 . . . . . . . . 9 (𝑝 = 𝐾 → (meet‘𝑝) = )
1413oveqd 7162 . . . . . . . 8 (𝑝 = 𝐾 → (𝑥(meet‘𝑝)𝑦) = (𝑥 𝑦))
15 eqidd 2819 . . . . . . . . 9 (𝑝 = 𝐾𝑥 = 𝑥)
16 fveq2 6663 . . . . . . . . . . 11 (𝑝 = 𝐾 → (oc‘𝑝) = (oc‘𝐾))
17 cmtfval.o . . . . . . . . . . 11 = (oc‘𝐾)
1816, 17syl6eqr 2871 . . . . . . . . . 10 (𝑝 = 𝐾 → (oc‘𝑝) = )
1918fveq1d 6665 . . . . . . . . 9 (𝑝 = 𝐾 → ((oc‘𝑝)‘𝑦) = ( 𝑦))
2013, 15, 19oveq123d 7166 . . . . . . . 8 (𝑝 = 𝐾 → (𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦)) = (𝑥 ( 𝑦)))
2110, 14, 20oveq123d 7166 . . . . . . 7 (𝑝 = 𝐾 → ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦))) = ((𝑥 𝑦) (𝑥 ( 𝑦))))
2221eqeq2d 2829 . . . . . 6 (𝑝 = 𝐾 → (𝑥 = ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦))) ↔ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦)))))
236, 7, 223anbi123d 1427 . . . . 5 (𝑝 = 𝐾 → ((𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝) ∧ 𝑥 = ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦)))) ↔ (𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))))
2423opabbidv 5123 . . . 4 (𝑝 = 𝐾 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝) ∧ 𝑥 = ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦))))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))})
25 df-cmtN 36193 . . . 4 cm = (𝑝 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝) ∧ 𝑥 = ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦))))})
26 df-3an 1081 . . . . . 6 ((𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦)))) ↔ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦)))))
2726opabbii 5124 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))}
284fvexi 6677 . . . . . . 7 𝐵 ∈ V
2928, 28xpex 7465 . . . . . 6 (𝐵 × 𝐵) ∈ V
30 opabssxp 5636 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))} ⊆ (𝐵 × 𝐵)
3129, 30ssexi 5217 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))} ∈ V
3227, 31eqeltri 2906 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))} ∈ V
3324, 25, 32fvmpt 6761 . . 3 (𝐾 ∈ V → (cm‘𝐾) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))})
342, 33syl5eq 2865 . 2 (𝐾 ∈ V → 𝐶 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))})
351, 34syl 17 1 (𝐾𝐴𝐶 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  Vcvv 3492  {copab 5119   × cxp 5546  cfv 6348  (class class class)co 7145  Basecbs 16471  occoc 16561  joincjn 17542  meetcmee 17543  cmccmtN 36189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-iota 6307  df-fun 6350  df-fv 6356  df-ov 7148  df-cmtN 36193
This theorem is referenced by:  cmtvalN  36227
  Copyright terms: Public domain W3C validator