MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmvth Structured version   Visualization version   GIF version

Theorem cmvth 23658
Description: Cauchy's Mean Value Theorem. If 𝐹, 𝐺 are real continuous functions on [𝐴, 𝐵] differentiable on (𝐴, 𝐵), then there is some 𝑥 ∈ (𝐴, 𝐵) such that 𝐹' (𝑥) / 𝐺' (𝑥) = (𝐹(𝐴) − 𝐹(𝐵)) / (𝐺(𝐴) − 𝐺(𝐵)). (We express the condition without division, so that we need no nonzero constraints.) (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
cmvth.a (𝜑𝐴 ∈ ℝ)
cmvth.b (𝜑𝐵 ∈ ℝ)
cmvth.lt (𝜑𝐴 < 𝐵)
cmvth.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
cmvth.g (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ))
cmvth.df (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
cmvth.dg (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
Assertion
Ref Expression
cmvth (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)(((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) = (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥

Proof of Theorem cmvth
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cmvth.a . . 3 (𝜑𝐴 ∈ ℝ)
2 cmvth.b . . 3 (𝜑𝐵 ∈ ℝ)
3 cmvth.lt . . 3 (𝜑𝐴 < 𝐵)
4 eqid 2621 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
54subcn 22577 . . . 4 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
64mulcn 22578 . . . . 5 · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
7 cmvth.f . . . . . . . . 9 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
8 cncff 22604 . . . . . . . . 9 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
97, 8syl 17 . . . . . . . 8 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
101rexrd 10033 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ*)
112rexrd 10033 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ*)
121, 2, 3ltled 10129 . . . . . . . . 9 (𝜑𝐴𝐵)
13 ubicc2 12231 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
1410, 11, 12, 13syl3anc 1323 . . . . . . . 8 (𝜑𝐵 ∈ (𝐴[,]𝐵))
159, 14ffvelrnd 6316 . . . . . . 7 (𝜑 → (𝐹𝐵) ∈ ℝ)
16 lbicc2 12230 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
1710, 11, 12, 16syl3anc 1323 . . . . . . . 8 (𝜑𝐴 ∈ (𝐴[,]𝐵))
189, 17ffvelrnd 6316 . . . . . . 7 (𝜑 → (𝐹𝐴) ∈ ℝ)
1915, 18resubcld 10402 . . . . . 6 (𝜑 → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℝ)
20 iccssre 12197 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
211, 2, 20syl2anc 692 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
22 ax-resscn 9937 . . . . . . 7 ℝ ⊆ ℂ
2321, 22syl6ss 3595 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
2422a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
25 cncfmptc 22622 . . . . . 6 ((((𝐹𝐵) − (𝐹𝐴)) ∈ ℝ ∧ (𝐴[,]𝐵) ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑧 ∈ (𝐴[,]𝐵) ↦ ((𝐹𝐵) − (𝐹𝐴))) ∈ ((𝐴[,]𝐵)–cn→ℝ))
2619, 23, 24, 25syl3anc 1323 . . . . 5 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ ((𝐹𝐵) − (𝐹𝐴))) ∈ ((𝐴[,]𝐵)–cn→ℝ))
27 cmvth.g . . . . . . . 8 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ))
28 cncff 22604 . . . . . . . 8 (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐺:(𝐴[,]𝐵)⟶ℝ)
2927, 28syl 17 . . . . . . 7 (𝜑𝐺:(𝐴[,]𝐵)⟶ℝ)
3029feqmptd 6206 . . . . . 6 (𝜑𝐺 = (𝑧 ∈ (𝐴[,]𝐵) ↦ (𝐺𝑧)))
3130, 27eqeltrrd 2699 . . . . 5 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ (𝐺𝑧)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
32 remulcl 9965 . . . . 5 ((((𝐹𝐵) − (𝐹𝐴)) ∈ ℝ ∧ (𝐺𝑧) ∈ ℝ) → (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) ∈ ℝ)
334, 6, 26, 31, 22, 32cncfmpt2ss 22626 . . . 4 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧))) ∈ ((𝐴[,]𝐵)–cn→ℝ))
3429, 14ffvelrnd 6316 . . . . . . 7 (𝜑 → (𝐺𝐵) ∈ ℝ)
3529, 17ffvelrnd 6316 . . . . . . 7 (𝜑 → (𝐺𝐴) ∈ ℝ)
3634, 35resubcld 10402 . . . . . 6 (𝜑 → ((𝐺𝐵) − (𝐺𝐴)) ∈ ℝ)
37 cncfmptc 22622 . . . . . 6 ((((𝐺𝐵) − (𝐺𝐴)) ∈ ℝ ∧ (𝐴[,]𝐵) ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑧 ∈ (𝐴[,]𝐵) ↦ ((𝐺𝐵) − (𝐺𝐴))) ∈ ((𝐴[,]𝐵)–cn→ℝ))
3836, 23, 24, 37syl3anc 1323 . . . . 5 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ ((𝐺𝐵) − (𝐺𝐴))) ∈ ((𝐴[,]𝐵)–cn→ℝ))
399feqmptd 6206 . . . . . 6 (𝜑𝐹 = (𝑧 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑧)))
4039, 7eqeltrrd 2699 . . . . 5 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑧)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
41 remulcl 9965 . . . . 5 ((((𝐺𝐵) − (𝐺𝐴)) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)) ∈ ℝ)
424, 6, 38, 40, 22, 41cncfmpt2ss 22626 . . . 4 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))) ∈ ((𝐴[,]𝐵)–cn→ℝ))
43 resubcl 10289 . . . 4 (((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) ∈ ℝ ∧ (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)) ∈ ℝ) → ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))) ∈ ℝ)
444, 5, 33, 42, 22, 43cncfmpt2ss 22626 . . 3 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))) ∈ ((𝐴[,]𝐵)–cn→ℝ))
4519recnd 10012 . . . . . . . . . 10 (𝜑 → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℂ)
4645adantr 481 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℂ)
4729ffvelrnda 6315 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝐺𝑧) ∈ ℝ)
4847recnd 10012 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝐺𝑧) ∈ ℂ)
4946, 48mulcld 10004 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) ∈ ℂ)
5036adantr 481 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → ((𝐺𝐵) − (𝐺𝐴)) ∈ ℝ)
519ffvelrnda 6315 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝐹𝑧) ∈ ℝ)
5250, 51remulcld 10014 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)) ∈ ℝ)
5352recnd 10012 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)) ∈ ℂ)
5449, 53subcld 10336 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))) ∈ ℂ)
554tgioo2 22514 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
56 iccntr 22532 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
571, 2, 56syl2anc 692 . . . . . . 7 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
5824, 21, 54, 55, 4, 57dvmptntr 23640 . . . . . 6 (𝜑 → (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))) = (ℝ D (𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))))
59 reelprrecn 9972 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
6059a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
61 ioossicc 12201 . . . . . . . . 9 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
6261sseli 3579 . . . . . . . 8 (𝑧 ∈ (𝐴(,)𝐵) → 𝑧 ∈ (𝐴[,]𝐵))
6362, 49sylan2 491 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) ∈ ℂ)
64 ovex 6632 . . . . . . . 8 (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) ∈ V
6564a1i 11 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) ∈ V)
6662, 48sylan2 491 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ℂ)
67 fvex 6158 . . . . . . . . 9 ((ℝ D 𝐺)‘𝑧) ∈ V
6867a1i 11 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ V)
6930oveq2d 6620 . . . . . . . . 9 (𝜑 → (ℝ D 𝐺) = (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ (𝐺𝑧))))
70 dvf 23577 . . . . . . . . . . 11 (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ
71 cmvth.dg . . . . . . . . . . . 12 (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
7271feq2d 5988 . . . . . . . . . . 11 (𝜑 → ((ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ ↔ (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ))
7370, 72mpbii 223 . . . . . . . . . 10 (𝜑 → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ)
7473feqmptd 6206 . . . . . . . . 9 (𝜑 → (ℝ D 𝐺) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐺)‘𝑧)))
7524, 21, 48, 55, 4, 57dvmptntr 23640 . . . . . . . . 9 (𝜑 → (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ (𝐺𝑧))) = (ℝ D (𝑧 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑧))))
7669, 74, 753eqtr3rd 2664 . . . . . . . 8 (𝜑 → (ℝ D (𝑧 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑧))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐺)‘𝑧)))
7760, 66, 68, 76, 45dvmptcmul 23633 . . . . . . 7 (𝜑 → (ℝ D (𝑧 ∈ (𝐴(,)𝐵) ↦ (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧))))
7862, 53sylan2 491 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)) ∈ ℂ)
79 ovex 6632 . . . . . . . 8 (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧)) ∈ V
8079a1i 11 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧)) ∈ V)
8151recnd 10012 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝐹𝑧) ∈ ℂ)
8262, 81sylan2 491 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐹𝑧) ∈ ℂ)
83 fvex 6158 . . . . . . . . 9 ((ℝ D 𝐹)‘𝑧) ∈ V
8483a1i 11 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑧) ∈ V)
8539oveq2d 6620 . . . . . . . . 9 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑧))))
86 dvf 23577 . . . . . . . . . . 11 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
87 cmvth.df . . . . . . . . . . . 12 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
8887feq2d 5988 . . . . . . . . . . 11 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ))
8986, 88mpbii 223 . . . . . . . . . 10 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
9089feqmptd 6206 . . . . . . . . 9 (𝜑 → (ℝ D 𝐹) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑧)))
9124, 21, 81, 55, 4, 57dvmptntr 23640 . . . . . . . . 9 (𝜑 → (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑧))) = (ℝ D (𝑧 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑧))))
9285, 90, 913eqtr3rd 2664 . . . . . . . 8 (𝜑 → (ℝ D (𝑧 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑧))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑧)))
9336recnd 10012 . . . . . . . 8 (𝜑 → ((𝐺𝐵) − (𝐺𝐴)) ∈ ℂ)
9460, 82, 84, 92, 93dvmptcmul 23633 . . . . . . 7 (𝜑 → (ℝ D (𝑧 ∈ (𝐴(,)𝐵) ↦ (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧))))
9560, 63, 65, 77, 78, 80, 94dvmptsub 23636 . . . . . 6 (𝜑 → (ℝ D (𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧)))))
9658, 95eqtrd 2655 . . . . 5 (𝜑 → (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧)))))
9796dmeqd 5286 . . . 4 (𝜑 → dom (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))) = dom (𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧)))))
98 ovex 6632 . . . . 5 ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧))) ∈ V
99 eqid 2621 . . . . 5 (𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧)))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧))))
10098, 99dmmpti 5980 . . . 4 dom (𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧)))) = (𝐴(,)𝐵)
10197, 100syl6eq 2671 . . 3 (𝜑 → dom (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))) = (𝐴(,)𝐵))
10215recnd 10012 . . . . . . . 8 (𝜑 → (𝐹𝐵) ∈ ℂ)
10335recnd 10012 . . . . . . . 8 (𝜑 → (𝐺𝐴) ∈ ℂ)
104102, 103mulcld 10004 . . . . . . 7 (𝜑 → ((𝐹𝐵) · (𝐺𝐴)) ∈ ℂ)
10518recnd 10012 . . . . . . . 8 (𝜑 → (𝐹𝐴) ∈ ℂ)
10634recnd 10012 . . . . . . . 8 (𝜑 → (𝐺𝐵) ∈ ℂ)
107105, 106mulcld 10004 . . . . . . 7 (𝜑 → ((𝐹𝐴) · (𝐺𝐵)) ∈ ℂ)
108105, 103mulcld 10004 . . . . . . 7 (𝜑 → ((𝐹𝐴) · (𝐺𝐴)) ∈ ℂ)
109104, 107, 108nnncan2d 10371 . . . . . 6 (𝜑 → ((((𝐹𝐵) · (𝐺𝐴)) − ((𝐹𝐴) · (𝐺𝐴))) − (((𝐹𝐴) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐴)))) = (((𝐹𝐵) · (𝐺𝐴)) − ((𝐹𝐴) · (𝐺𝐵))))
110102, 106mulcld 10004 . . . . . . 7 (𝜑 → ((𝐹𝐵) · (𝐺𝐵)) ∈ ℂ)
111110, 107, 104nnncan1d 10370 . . . . . 6 (𝜑 → ((((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐵))) − (((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐵) · (𝐺𝐴)))) = (((𝐹𝐵) · (𝐺𝐴)) − ((𝐹𝐴) · (𝐺𝐵))))
112109, 111eqtr4d 2658 . . . . 5 (𝜑 → ((((𝐹𝐵) · (𝐺𝐴)) − ((𝐹𝐴) · (𝐺𝐴))) − (((𝐹𝐴) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐴)))) = ((((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐵))) − (((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐵) · (𝐺𝐴)))))
113102, 105, 103subdird 10431 . . . . . 6 (𝜑 → (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐴)) = (((𝐹𝐵) · (𝐺𝐴)) − ((𝐹𝐴) · (𝐺𝐴))))
11493, 105mulcomd 10005 . . . . . . 7 (𝜑 → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐴)) = ((𝐹𝐴) · ((𝐺𝐵) − (𝐺𝐴))))
115105, 106, 103subdid 10430 . . . . . . 7 (𝜑 → ((𝐹𝐴) · ((𝐺𝐵) − (𝐺𝐴))) = (((𝐹𝐴) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐴))))
116114, 115eqtrd 2655 . . . . . 6 (𝜑 → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐴)) = (((𝐹𝐴) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐴))))
117113, 116oveq12d 6622 . . . . 5 (𝜑 → ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐴)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐴))) = ((((𝐹𝐵) · (𝐺𝐴)) − ((𝐹𝐴) · (𝐺𝐴))) − (((𝐹𝐴) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐴)))))
118102, 105, 106subdird 10431 . . . . . 6 (𝜑 → (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐵)) = (((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐵))))
11993, 102mulcomd 10005 . . . . . . 7 (𝜑 → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐵)) = ((𝐹𝐵) · ((𝐺𝐵) − (𝐺𝐴))))
120102, 106, 103subdid 10430 . . . . . . 7 (𝜑 → ((𝐹𝐵) · ((𝐺𝐵) − (𝐺𝐴))) = (((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐵) · (𝐺𝐴))))
121119, 120eqtrd 2655 . . . . . 6 (𝜑 → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐵)) = (((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐵) · (𝐺𝐴))))
122118, 121oveq12d 6622 . . . . 5 (𝜑 → ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐵)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐵))) = ((((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐵))) − (((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐵) · (𝐺𝐴)))))
123112, 117, 1223eqtr4d 2665 . . . 4 (𝜑 → ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐴)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐴))) = ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐵)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐵))))
124 fveq2 6148 . . . . . . . 8 (𝑧 = 𝐴 → (𝐺𝑧) = (𝐺𝐴))
125124oveq2d 6620 . . . . . . 7 (𝑧 = 𝐴 → (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) = (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐴)))
126 fveq2 6148 . . . . . . . 8 (𝑧 = 𝐴 → (𝐹𝑧) = (𝐹𝐴))
127126oveq2d 6620 . . . . . . 7 (𝑧 = 𝐴 → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)) = (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐴)))
128125, 127oveq12d 6622 . . . . . 6 (𝑧 = 𝐴 → ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))) = ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐴)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐴))))
129 eqid 2621 . . . . . 6 (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))) = (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))
130 ovex 6632 . . . . . 6 ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))) ∈ V
131128, 129, 130fvmpt3i 6244 . . . . 5 (𝐴 ∈ (𝐴[,]𝐵) → ((𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))‘𝐴) = ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐴)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐴))))
13217, 131syl 17 . . . 4 (𝜑 → ((𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))‘𝐴) = ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐴)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐴))))
133 fveq2 6148 . . . . . . . 8 (𝑧 = 𝐵 → (𝐺𝑧) = (𝐺𝐵))
134133oveq2d 6620 . . . . . . 7 (𝑧 = 𝐵 → (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) = (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐵)))
135 fveq2 6148 . . . . . . . 8 (𝑧 = 𝐵 → (𝐹𝑧) = (𝐹𝐵))
136135oveq2d 6620 . . . . . . 7 (𝑧 = 𝐵 → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)) = (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐵)))
137134, 136oveq12d 6622 . . . . . 6 (𝑧 = 𝐵 → ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))) = ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐵)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐵))))
138137, 129, 130fvmpt3i 6244 . . . . 5 (𝐵 ∈ (𝐴[,]𝐵) → ((𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))‘𝐵) = ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐵)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐵))))
13914, 138syl 17 . . . 4 (𝜑 → ((𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))‘𝐵) = ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐵)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐵))))
140123, 132, 1393eqtr4d 2665 . . 3 (𝜑 → ((𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))‘𝐴) = ((𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))‘𝐵))
1411, 2, 3, 44, 101, 140rolle 23657 . 2 (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))))‘𝑥) = 0)
14296fveq1d 6150 . . . . . 6 (𝜑 → ((ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))))‘𝑥) = ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧))))‘𝑥))
143 fveq2 6148 . . . . . . . . 9 (𝑧 = 𝑥 → ((ℝ D 𝐺)‘𝑧) = ((ℝ D 𝐺)‘𝑥))
144143oveq2d 6620 . . . . . . . 8 (𝑧 = 𝑥 → (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) = (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)))
145 fveq2 6148 . . . . . . . . 9 (𝑧 = 𝑥 → ((ℝ D 𝐹)‘𝑧) = ((ℝ D 𝐹)‘𝑥))
146145oveq2d 6620 . . . . . . . 8 (𝑧 = 𝑥 → (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧)) = (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥)))
147144, 146oveq12d 6622 . . . . . . 7 (𝑧 = 𝑥 → ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧))) = ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥))))
148147, 99, 98fvmpt3i 6244 . . . . . 6 (𝑥 ∈ (𝐴(,)𝐵) → ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧))))‘𝑥) = ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥))))
149142, 148sylan9eq 2675 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))))‘𝑥) = ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥))))
150149eqeq1d 2623 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))))‘𝑥) = 0 ↔ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥))) = 0))
15145adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℂ)
15273ffvelrnda 6315 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑥) ∈ ℂ)
153151, 152mulcld 10004 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) ∈ ℂ)
15493adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐺𝐵) − (𝐺𝐴)) ∈ ℂ)
15589ffvelrnda 6315 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
156154, 155mulcld 10004 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥)) ∈ ℂ)
157153, 156subeq0ad 10346 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥))) = 0 ↔ (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) = (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥))))
158150, 157bitrd 268 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))))‘𝑥) = 0 ↔ (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) = (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥))))
159158rexbidva 3042 . 2 (𝜑 → (∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))))‘𝑥) = 0 ↔ ∃𝑥 ∈ (𝐴(,)𝐵)(((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) = (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥))))
160141, 159mpbid 222 1 (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)(((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) = (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wrex 2908  Vcvv 3186  wss 3555  {cpr 4150   class class class wbr 4613  cmpt 4673  dom cdm 5074  ran crn 5075  wf 5843  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880   · cmul 9885  *cxr 10017   < clt 10018  cle 10019  cmin 10210  (,)cioo 12117  [,]cicc 12120  TopOpenctopn 16003  topGenctg 16019  fldccnfld 19665  intcnt 20731  cnccncf 22587   D cdv 23533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850  df-perf 20851  df-cn 20941  df-cnp 20942  df-haus 21029  df-cmp 21100  df-tx 21275  df-hmeo 21468  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-xms 22035  df-ms 22036  df-tms 22037  df-cncf 22589  df-limc 23536  df-dv 23537
This theorem is referenced by:  mvth  23659  lhop1lem  23680
  Copyright terms: Public domain W3C validator