MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmvth Structured version   Visualization version   GIF version

Theorem cmvth 24590
Description: Cauchy's Mean Value Theorem. If 𝐹, 𝐺 are real continuous functions on [𝐴, 𝐵] differentiable on (𝐴, 𝐵), then there is some 𝑥 ∈ (𝐴, 𝐵) such that 𝐹' (𝑥) / 𝐺' (𝑥) = (𝐹(𝐴) − 𝐹(𝐵)) / (𝐺(𝐴) − 𝐺(𝐵)). (We express the condition without division, so that we need no nonzero constraints.) (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
cmvth.a (𝜑𝐴 ∈ ℝ)
cmvth.b (𝜑𝐵 ∈ ℝ)
cmvth.lt (𝜑𝐴 < 𝐵)
cmvth.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
cmvth.g (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ))
cmvth.df (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
cmvth.dg (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
Assertion
Ref Expression
cmvth (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)(((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) = (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥

Proof of Theorem cmvth
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cmvth.a . . 3 (𝜑𝐴 ∈ ℝ)
2 cmvth.b . . 3 (𝜑𝐵 ∈ ℝ)
3 cmvth.lt . . 3 (𝜑𝐴 < 𝐵)
4 eqid 2823 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
54subcn 23476 . . . 4 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
64mulcn 23477 . . . . 5 · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
7 cmvth.f . . . . . . . . 9 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
8 cncff 23503 . . . . . . . . 9 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
97, 8syl 17 . . . . . . . 8 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
101rexrd 10693 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ*)
112rexrd 10693 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ*)
121, 2, 3ltled 10790 . . . . . . . . 9 (𝜑𝐴𝐵)
13 ubicc2 12856 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
1410, 11, 12, 13syl3anc 1367 . . . . . . . 8 (𝜑𝐵 ∈ (𝐴[,]𝐵))
159, 14ffvelrnd 6854 . . . . . . 7 (𝜑 → (𝐹𝐵) ∈ ℝ)
16 lbicc2 12855 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
1710, 11, 12, 16syl3anc 1367 . . . . . . . 8 (𝜑𝐴 ∈ (𝐴[,]𝐵))
189, 17ffvelrnd 6854 . . . . . . 7 (𝜑 → (𝐹𝐴) ∈ ℝ)
1915, 18resubcld 11070 . . . . . 6 (𝜑 → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℝ)
20 iccssre 12821 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
211, 2, 20syl2anc 586 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
22 ax-resscn 10596 . . . . . . 7 ℝ ⊆ ℂ
2321, 22sstrdi 3981 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
2422a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
25 cncfmptc 23521 . . . . . 6 ((((𝐹𝐵) − (𝐹𝐴)) ∈ ℝ ∧ (𝐴[,]𝐵) ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑧 ∈ (𝐴[,]𝐵) ↦ ((𝐹𝐵) − (𝐹𝐴))) ∈ ((𝐴[,]𝐵)–cn→ℝ))
2619, 23, 24, 25syl3anc 1367 . . . . 5 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ ((𝐹𝐵) − (𝐹𝐴))) ∈ ((𝐴[,]𝐵)–cn→ℝ))
27 cmvth.g . . . . . . . 8 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ))
28 cncff 23503 . . . . . . . 8 (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐺:(𝐴[,]𝐵)⟶ℝ)
2927, 28syl 17 . . . . . . 7 (𝜑𝐺:(𝐴[,]𝐵)⟶ℝ)
3029feqmptd 6735 . . . . . 6 (𝜑𝐺 = (𝑧 ∈ (𝐴[,]𝐵) ↦ (𝐺𝑧)))
3130, 27eqeltrrd 2916 . . . . 5 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ (𝐺𝑧)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
32 remulcl 10624 . . . . 5 ((((𝐹𝐵) − (𝐹𝐴)) ∈ ℝ ∧ (𝐺𝑧) ∈ ℝ) → (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) ∈ ℝ)
334, 6, 26, 31, 22, 32cncfmpt2ss 23525 . . . 4 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧))) ∈ ((𝐴[,]𝐵)–cn→ℝ))
3429, 14ffvelrnd 6854 . . . . . . 7 (𝜑 → (𝐺𝐵) ∈ ℝ)
3529, 17ffvelrnd 6854 . . . . . . 7 (𝜑 → (𝐺𝐴) ∈ ℝ)
3634, 35resubcld 11070 . . . . . 6 (𝜑 → ((𝐺𝐵) − (𝐺𝐴)) ∈ ℝ)
37 cncfmptc 23521 . . . . . 6 ((((𝐺𝐵) − (𝐺𝐴)) ∈ ℝ ∧ (𝐴[,]𝐵) ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑧 ∈ (𝐴[,]𝐵) ↦ ((𝐺𝐵) − (𝐺𝐴))) ∈ ((𝐴[,]𝐵)–cn→ℝ))
3836, 23, 24, 37syl3anc 1367 . . . . 5 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ ((𝐺𝐵) − (𝐺𝐴))) ∈ ((𝐴[,]𝐵)–cn→ℝ))
399feqmptd 6735 . . . . . 6 (𝜑𝐹 = (𝑧 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑧)))
4039, 7eqeltrrd 2916 . . . . 5 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑧)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
41 remulcl 10624 . . . . 5 ((((𝐺𝐵) − (𝐺𝐴)) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)) ∈ ℝ)
424, 6, 38, 40, 22, 41cncfmpt2ss 23525 . . . 4 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))) ∈ ((𝐴[,]𝐵)–cn→ℝ))
43 resubcl 10952 . . . 4 (((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) ∈ ℝ ∧ (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)) ∈ ℝ) → ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))) ∈ ℝ)
444, 5, 33, 42, 22, 43cncfmpt2ss 23525 . . 3 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))) ∈ ((𝐴[,]𝐵)–cn→ℝ))
4519recnd 10671 . . . . . . . . . 10 (𝜑 → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℂ)
4645adantr 483 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℂ)
4729ffvelrnda 6853 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝐺𝑧) ∈ ℝ)
4847recnd 10671 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝐺𝑧) ∈ ℂ)
4946, 48mulcld 10663 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) ∈ ℂ)
5036adantr 483 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → ((𝐺𝐵) − (𝐺𝐴)) ∈ ℝ)
519ffvelrnda 6853 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝐹𝑧) ∈ ℝ)
5250, 51remulcld 10673 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)) ∈ ℝ)
5352recnd 10671 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)) ∈ ℂ)
5449, 53subcld 10999 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))) ∈ ℂ)
554tgioo2 23413 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
56 iccntr 23431 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
571, 2, 56syl2anc 586 . . . . . . 7 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
5824, 21, 54, 55, 4, 57dvmptntr 24570 . . . . . 6 (𝜑 → (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))) = (ℝ D (𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))))
59 reelprrecn 10631 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
6059a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
61 ioossicc 12825 . . . . . . . . 9 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
6261sseli 3965 . . . . . . . 8 (𝑧 ∈ (𝐴(,)𝐵) → 𝑧 ∈ (𝐴[,]𝐵))
6362, 49sylan2 594 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) ∈ ℂ)
64 ovex 7191 . . . . . . . 8 (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) ∈ V
6564a1i 11 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) ∈ V)
6662, 48sylan2 594 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ℂ)
67 fvexd 6687 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ V)
6830oveq2d 7174 . . . . . . . . 9 (𝜑 → (ℝ D 𝐺) = (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ (𝐺𝑧))))
69 dvf 24507 . . . . . . . . . . 11 (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ
70 cmvth.dg . . . . . . . . . . . 12 (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
7170feq2d 6502 . . . . . . . . . . 11 (𝜑 → ((ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ ↔ (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ))
7269, 71mpbii 235 . . . . . . . . . 10 (𝜑 → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ)
7372feqmptd 6735 . . . . . . . . 9 (𝜑 → (ℝ D 𝐺) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐺)‘𝑧)))
7424, 21, 48, 55, 4, 57dvmptntr 24570 . . . . . . . . 9 (𝜑 → (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ (𝐺𝑧))) = (ℝ D (𝑧 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑧))))
7568, 73, 743eqtr3rd 2867 . . . . . . . 8 (𝜑 → (ℝ D (𝑧 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑧))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐺)‘𝑧)))
7660, 66, 67, 75, 45dvmptcmul 24563 . . . . . . 7 (𝜑 → (ℝ D (𝑧 ∈ (𝐴(,)𝐵) ↦ (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧))))
7762, 53sylan2 594 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)) ∈ ℂ)
78 ovex 7191 . . . . . . . 8 (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧)) ∈ V
7978a1i 11 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧)) ∈ V)
8051recnd 10671 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝐹𝑧) ∈ ℂ)
8162, 80sylan2 594 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐹𝑧) ∈ ℂ)
82 fvexd 6687 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑧) ∈ V)
8339oveq2d 7174 . . . . . . . . 9 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑧))))
84 dvf 24507 . . . . . . . . . . 11 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
85 cmvth.df . . . . . . . . . . . 12 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
8685feq2d 6502 . . . . . . . . . . 11 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ))
8784, 86mpbii 235 . . . . . . . . . 10 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
8887feqmptd 6735 . . . . . . . . 9 (𝜑 → (ℝ D 𝐹) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑧)))
8924, 21, 80, 55, 4, 57dvmptntr 24570 . . . . . . . . 9 (𝜑 → (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑧))) = (ℝ D (𝑧 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑧))))
9083, 88, 893eqtr3rd 2867 . . . . . . . 8 (𝜑 → (ℝ D (𝑧 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑧))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑧)))
9136recnd 10671 . . . . . . . 8 (𝜑 → ((𝐺𝐵) − (𝐺𝐴)) ∈ ℂ)
9260, 81, 82, 90, 91dvmptcmul 24563 . . . . . . 7 (𝜑 → (ℝ D (𝑧 ∈ (𝐴(,)𝐵) ↦ (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧))))
9360, 63, 65, 76, 77, 79, 92dvmptsub 24566 . . . . . 6 (𝜑 → (ℝ D (𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧)))))
9458, 93eqtrd 2858 . . . . 5 (𝜑 → (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧)))))
9594dmeqd 5776 . . . 4 (𝜑 → dom (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))) = dom (𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧)))))
96 ovex 7191 . . . . 5 ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧))) ∈ V
97 eqid 2823 . . . . 5 (𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧)))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧))))
9896, 97dmmpti 6494 . . . 4 dom (𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧)))) = (𝐴(,)𝐵)
9995, 98syl6eq 2874 . . 3 (𝜑 → dom (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))) = (𝐴(,)𝐵))
10015recnd 10671 . . . . . . . 8 (𝜑 → (𝐹𝐵) ∈ ℂ)
10135recnd 10671 . . . . . . . 8 (𝜑 → (𝐺𝐴) ∈ ℂ)
102100, 101mulcld 10663 . . . . . . 7 (𝜑 → ((𝐹𝐵) · (𝐺𝐴)) ∈ ℂ)
10318recnd 10671 . . . . . . . 8 (𝜑 → (𝐹𝐴) ∈ ℂ)
10434recnd 10671 . . . . . . . 8 (𝜑 → (𝐺𝐵) ∈ ℂ)
105103, 104mulcld 10663 . . . . . . 7 (𝜑 → ((𝐹𝐴) · (𝐺𝐵)) ∈ ℂ)
106103, 101mulcld 10663 . . . . . . 7 (𝜑 → ((𝐹𝐴) · (𝐺𝐴)) ∈ ℂ)
107102, 105, 106nnncan2d 11034 . . . . . 6 (𝜑 → ((((𝐹𝐵) · (𝐺𝐴)) − ((𝐹𝐴) · (𝐺𝐴))) − (((𝐹𝐴) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐴)))) = (((𝐹𝐵) · (𝐺𝐴)) − ((𝐹𝐴) · (𝐺𝐵))))
108100, 104mulcld 10663 . . . . . . 7 (𝜑 → ((𝐹𝐵) · (𝐺𝐵)) ∈ ℂ)
109108, 105, 102nnncan1d 11033 . . . . . 6 (𝜑 → ((((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐵))) − (((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐵) · (𝐺𝐴)))) = (((𝐹𝐵) · (𝐺𝐴)) − ((𝐹𝐴) · (𝐺𝐵))))
110107, 109eqtr4d 2861 . . . . 5 (𝜑 → ((((𝐹𝐵) · (𝐺𝐴)) − ((𝐹𝐴) · (𝐺𝐴))) − (((𝐹𝐴) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐴)))) = ((((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐵))) − (((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐵) · (𝐺𝐴)))))
111100, 103, 101subdird 11099 . . . . . 6 (𝜑 → (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐴)) = (((𝐹𝐵) · (𝐺𝐴)) − ((𝐹𝐴) · (𝐺𝐴))))
11291, 103mulcomd 10664 . . . . . . 7 (𝜑 → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐴)) = ((𝐹𝐴) · ((𝐺𝐵) − (𝐺𝐴))))
113103, 104, 101subdid 11098 . . . . . . 7 (𝜑 → ((𝐹𝐴) · ((𝐺𝐵) − (𝐺𝐴))) = (((𝐹𝐴) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐴))))
114112, 113eqtrd 2858 . . . . . 6 (𝜑 → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐴)) = (((𝐹𝐴) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐴))))
115111, 114oveq12d 7176 . . . . 5 (𝜑 → ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐴)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐴))) = ((((𝐹𝐵) · (𝐺𝐴)) − ((𝐹𝐴) · (𝐺𝐴))) − (((𝐹𝐴) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐴)))))
116100, 103, 104subdird 11099 . . . . . 6 (𝜑 → (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐵)) = (((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐵))))
11791, 100mulcomd 10664 . . . . . . 7 (𝜑 → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐵)) = ((𝐹𝐵) · ((𝐺𝐵) − (𝐺𝐴))))
118100, 104, 101subdid 11098 . . . . . . 7 (𝜑 → ((𝐹𝐵) · ((𝐺𝐵) − (𝐺𝐴))) = (((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐵) · (𝐺𝐴))))
119117, 118eqtrd 2858 . . . . . 6 (𝜑 → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐵)) = (((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐵) · (𝐺𝐴))))
120116, 119oveq12d 7176 . . . . 5 (𝜑 → ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐵)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐵))) = ((((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐵))) − (((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐵) · (𝐺𝐴)))))
121110, 115, 1203eqtr4d 2868 . . . 4 (𝜑 → ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐴)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐴))) = ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐵)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐵))))
122 fveq2 6672 . . . . . . . 8 (𝑧 = 𝐴 → (𝐺𝑧) = (𝐺𝐴))
123122oveq2d 7174 . . . . . . 7 (𝑧 = 𝐴 → (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) = (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐴)))
124 fveq2 6672 . . . . . . . 8 (𝑧 = 𝐴 → (𝐹𝑧) = (𝐹𝐴))
125124oveq2d 7174 . . . . . . 7 (𝑧 = 𝐴 → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)) = (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐴)))
126123, 125oveq12d 7176 . . . . . 6 (𝑧 = 𝐴 → ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))) = ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐴)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐴))))
127 eqid 2823 . . . . . 6 (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))) = (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))
128 ovex 7191 . . . . . 6 ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))) ∈ V
129126, 127, 128fvmpt3i 6775 . . . . 5 (𝐴 ∈ (𝐴[,]𝐵) → ((𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))‘𝐴) = ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐴)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐴))))
13017, 129syl 17 . . . 4 (𝜑 → ((𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))‘𝐴) = ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐴)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐴))))
131 fveq2 6672 . . . . . . . 8 (𝑧 = 𝐵 → (𝐺𝑧) = (𝐺𝐵))
132131oveq2d 7174 . . . . . . 7 (𝑧 = 𝐵 → (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) = (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐵)))
133 fveq2 6672 . . . . . . . 8 (𝑧 = 𝐵 → (𝐹𝑧) = (𝐹𝐵))
134133oveq2d 7174 . . . . . . 7 (𝑧 = 𝐵 → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)) = (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐵)))
135132, 134oveq12d 7176 . . . . . 6 (𝑧 = 𝐵 → ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))) = ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐵)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐵))))
136135, 127, 128fvmpt3i 6775 . . . . 5 (𝐵 ∈ (𝐴[,]𝐵) → ((𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))‘𝐵) = ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐵)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐵))))
13714, 136syl 17 . . . 4 (𝜑 → ((𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))‘𝐵) = ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐵)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐵))))
138121, 130, 1373eqtr4d 2868 . . 3 (𝜑 → ((𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))‘𝐴) = ((𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))‘𝐵))
1391, 2, 3, 44, 99, 138rolle 24589 . 2 (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))))‘𝑥) = 0)
14094fveq1d 6674 . . . . . 6 (𝜑 → ((ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))))‘𝑥) = ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧))))‘𝑥))
141 fveq2 6672 . . . . . . . . 9 (𝑧 = 𝑥 → ((ℝ D 𝐺)‘𝑧) = ((ℝ D 𝐺)‘𝑥))
142141oveq2d 7174 . . . . . . . 8 (𝑧 = 𝑥 → (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) = (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)))
143 fveq2 6672 . . . . . . . . 9 (𝑧 = 𝑥 → ((ℝ D 𝐹)‘𝑧) = ((ℝ D 𝐹)‘𝑥))
144143oveq2d 7174 . . . . . . . 8 (𝑧 = 𝑥 → (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧)) = (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥)))
145142, 144oveq12d 7176 . . . . . . 7 (𝑧 = 𝑥 → ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧))) = ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥))))
146145, 97, 96fvmpt3i 6775 . . . . . 6 (𝑥 ∈ (𝐴(,)𝐵) → ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧))))‘𝑥) = ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥))))
147140, 146sylan9eq 2878 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))))‘𝑥) = ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥))))
148147eqeq1d 2825 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))))‘𝑥) = 0 ↔ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥))) = 0))
14945adantr 483 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℂ)
15072ffvelrnda 6853 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑥) ∈ ℂ)
151149, 150mulcld 10663 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) ∈ ℂ)
15291adantr 483 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐺𝐵) − (𝐺𝐴)) ∈ ℂ)
15387ffvelrnda 6853 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
154152, 153mulcld 10663 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥)) ∈ ℂ)
155151, 154subeq0ad 11009 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥))) = 0 ↔ (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) = (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥))))
156148, 155bitrd 281 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))))‘𝑥) = 0 ↔ (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) = (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥))))
157156rexbidva 3298 . 2 (𝜑 → (∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))))‘𝑥) = 0 ↔ ∃𝑥 ∈ (𝐴(,)𝐵)(((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) = (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥))))
158139, 157mpbid 234 1 (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)(((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) = (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wrex 3141  Vcvv 3496  wss 3938  {cpr 4571   class class class wbr 5068  cmpt 5148  dom cdm 5557  ran crn 5558  wf 6353  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539   · cmul 10544  *cxr 10676   < clt 10677  cle 10678  cmin 10872  (,)cioo 12741  [,]cicc 12744  TopOpenctopn 16697  topGenctg 16713  fldccnfld 20547  intcnt 21627  cnccncf 23486   D cdv 24463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-cmp 21997  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467
This theorem is referenced by:  mvth  24591  lhop1lem  24612
  Copyright terms: Public domain W3C validator