MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnaddablx Structured version   Visualization version   GIF version

Theorem cnaddablx 18980
Description: The complex numbers are an Abelian group under addition. This version of cnaddabl 18981 shows the explicit structure "scaffold" we chose for the definition for Abelian groups. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use cnaddabl 18981 instead. (New usage is discouraged.) (Contributed by NM, 18-Oct-2012.)
Hypothesis
Ref Expression
cnaddablx.g 𝐺 = {⟨1, ℂ⟩, ⟨2, + ⟩}
Assertion
Ref Expression
cnaddablx 𝐺 ∈ Abel

Proof of Theorem cnaddablx
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 10610 . . 3 ℂ ∈ V
2 addex 12379 . . 3 + ∈ V
3 cnaddablx.g . . 3 𝐺 = {⟨1, ℂ⟩, ⟨2, + ⟩}
4 addcl 10611 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
5 addass 10616 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
6 0cn 10625 . . 3 0 ∈ ℂ
7 addid2 10815 . . 3 (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥)
8 negcl 10878 . . 3 (𝑥 ∈ ℂ → -𝑥 ∈ ℂ)
9 addcom 10818 . . . . 5 ((𝑥 ∈ ℂ ∧ -𝑥 ∈ ℂ) → (𝑥 + -𝑥) = (-𝑥 + 𝑥))
108, 9mpdan 685 . . . 4 (𝑥 ∈ ℂ → (𝑥 + -𝑥) = (-𝑥 + 𝑥))
11 negid 10925 . . . 4 (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0)
1210, 11eqtr3d 2856 . . 3 (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = 0)
131, 2, 3, 4, 5, 6, 7, 8, 12isgrpix 18122 . 2 𝐺 ∈ Grp
141, 2, 3grpbasex 16605 . 2 ℂ = (Base‘𝐺)
151, 2, 3grpplusgx 16606 . 2 + = (+g𝐺)
16 addcom 10818 . 2 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
1713, 14, 15, 16isabli 18913 1 𝐺 ∈ Abel
Colors of variables: wff setvar class
Syntax hints:   = wceq 1531  wcel 2108  {cpr 4561  cop 4565  (class class class)co 7148  cc 10527  0cc0 10529  1c1 10530   + caddc 10532  -cneg 10863  2c2 11684  Abelcabl 18899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-addf 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-cmn 18900  df-abl 18901
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator