Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnambfre Structured version   Visualization version   GIF version

Theorem cnambfre 34944
Description: A real-valued, a.e. continuous function is measurable. (Contributed by Brendan Leahy, 4-Apr-2018.)
Assertion
Ref Expression
cnambfre ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → 𝐹 ∈ MblFn)

Proof of Theorem cnambfre
Dummy variables 𝑓 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . . . . 10 (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℝ)
21feqmptd 6736 . . . . . . . . 9 (𝐹:𝐴⟶ℝ → 𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
32cnveqd 5749 . . . . . . . 8 (𝐹:𝐴⟶ℝ → 𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
43imaeq1d 5931 . . . . . . 7 (𝐹:𝐴⟶ℝ → (𝐹𝑏) = ((𝑥𝐴 ↦ (𝐹𝑥)) “ 𝑏))
54ad2antrr 724 . . . . . 6 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) → (𝐹𝑏) = ((𝑥𝐴 ↦ (𝐹𝑥)) “ 𝑏))
6 exmid 891 . . . . . . . . . . 11 (𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∨ ¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥))
76biantrur 533 . . . . . . . . . 10 ((𝐹𝑥) ∈ 𝑏 ↔ ((𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∨ ¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)) ∧ (𝐹𝑥) ∈ 𝑏))
8 andir 1005 . . . . . . . . . 10 (((𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∨ ¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)) ∧ (𝐹𝑥) ∈ 𝑏) ↔ ((𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏) ∨ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)))
97, 8bitri 277 . . . . . . . . 9 ((𝐹𝑥) ∈ 𝑏 ↔ ((𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏) ∨ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)))
10 retopbas 23372 . . . . . . . . . . . . . . . . . 18 ran (,) ∈ TopBases
11 bastg 21577 . . . . . . . . . . . . . . . . . 18 (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,)))
1210, 11ax-mp 5 . . . . . . . . . . . . . . . . 17 ran (,) ⊆ (topGen‘ran (,))
1312sseli 3966 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ran (,) → 𝑏 ∈ (topGen‘ran (,)))
1413ad2antlr 725 . . . . . . . . . . . . . . 15 ((((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) ∧ 𝑥𝐴) → 𝑏 ∈ (topGen‘ran (,)))
15 cnpimaex 21867 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ 𝑏 ∈ (topGen‘ran (,)) ∧ (𝐹𝑥) ∈ 𝑏) → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))
16153com12 1119 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ (topGen‘ran (,)) ∧ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏) → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))
17163expa 1114 . . . . . . . . . . . . . . 15 (((𝑏 ∈ (topGen‘ran (,)) ∧ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)) ∧ (𝐹𝑥) ∈ 𝑏) → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))
1814, 17sylanl1 678 . . . . . . . . . . . . . 14 ((((((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) ∧ 𝑥𝐴) ∧ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)) ∧ (𝐹𝑥) ∈ 𝑏) → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))
1918ex 415 . . . . . . . . . . . . 13 (((((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) ∧ 𝑥𝐴) ∧ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)) → ((𝐹𝑥) ∈ 𝑏 → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)))
20 simprrr 780 . . . . . . . . . . . . . . . 16 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ (𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))) → (𝐹𝑦) ⊆ 𝑏)
21 ffn 6517 . . . . . . . . . . . . . . . . . . 19 (𝐹:𝐴⟶ℝ → 𝐹 Fn 𝐴)
2221adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → 𝐹 Fn 𝐴)
23 restsspw 16708 . . . . . . . . . . . . . . . . . . . 20 ((topGen‘ran (,)) ↾t 𝐴) ⊆ 𝒫 𝐴
2423sseli 3966 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) → 𝑦 ∈ 𝒫 𝐴)
2524elpwid 4553 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) → 𝑦𝐴)
26 simpl 485 . . . . . . . . . . . . . . . . . 18 ((𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏) → 𝑥𝑦)
27 fnfvima 6998 . . . . . . . . . . . . . . . . . 18 ((𝐹 Fn 𝐴𝑦𝐴𝑥𝑦) → (𝐹𝑥) ∈ (𝐹𝑦))
2822, 25, 26, 27syl3an 1156 . . . . . . . . . . . . . . . . 17 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)) → (𝐹𝑥) ∈ (𝐹𝑦))
29283expb 1116 . . . . . . . . . . . . . . . 16 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ (𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))) → (𝐹𝑥) ∈ (𝐹𝑦))
3020, 29sseldd 3971 . . . . . . . . . . . . . . 15 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ (𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))) → (𝐹𝑥) ∈ 𝑏)
3130rexlimdvaa 3288 . . . . . . . . . . . . . 14 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏) → (𝐹𝑥) ∈ 𝑏))
3231ad3antrrr 728 . . . . . . . . . . . . 13 (((((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) ∧ 𝑥𝐴) ∧ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)) → (∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏) → (𝐹𝑥) ∈ 𝑏))
3319, 32impbid 214 . . . . . . . . . . . 12 (((((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) ∧ 𝑥𝐴) ∧ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)) → ((𝐹𝑥) ∈ 𝑏 ↔ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)))
3433pm5.32da 581 . . . . . . . . . . 11 ((((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) ∧ 𝑥𝐴) → ((𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏) ↔ (𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))))
35 r19.42v 3353 . . . . . . . . . . 11 (∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)) ↔ (𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)))
3634, 35syl6bbr 291 . . . . . . . . . 10 ((((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) ∧ 𝑥𝐴) → ((𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏) ↔ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))))
3736orbi1d 913 . . . . . . . . 9 ((((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) ∧ 𝑥𝐴) → (((𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏) ∨ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)) ↔ (∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)) ∨ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏))))
389, 37syl5bb 285 . . . . . . . 8 ((((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) ∧ 𝑥𝐴) → ((𝐹𝑥) ∈ 𝑏 ↔ (∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)) ∨ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏))))
3938rabbidva 3481 . . . . . . 7 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) → {𝑥𝐴 ∣ (𝐹𝑥) ∈ 𝑏} = {𝑥𝐴 ∣ (∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)) ∨ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏))})
40 eqid 2824 . . . . . . . 8 (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐹𝑥))
4140mptpreima 6095 . . . . . . 7 ((𝑥𝐴 ↦ (𝐹𝑥)) “ 𝑏) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ 𝑏}
42 unrab 4277 . . . . . . 7 ({𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} ∪ {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}) = {𝑥𝐴 ∣ (∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)) ∨ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏))}
4339, 41, 423eqtr4g 2884 . . . . . 6 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) → ((𝑥𝐴 ↦ (𝐹𝑥)) “ 𝑏) = ({𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} ∪ {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}))
445, 43eqtrd 2859 . . . . 5 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) → (𝐹𝑏) = ({𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} ∪ {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}))
45443adantl3 1164 . . . 4 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) ∧ 𝑏 ∈ ran (,)) → (𝐹𝑏) = ({𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} ∪ {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}))
46 incom 4181 . . . . . . . . 9 ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∩ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) = ({𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)} ∩ 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)})
47 dfin4 4247 . . . . . . . . 9 ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∩ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) = ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}))
48 inrab 4278 . . . . . . . . . . . 12 ({𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)} ∩ {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)}) = {𝑥𝐴 ∣ (𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))}
4948a1i 11 . . . . . . . . . . 11 (𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) → ({𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)} ∩ {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)}) = {𝑥𝐴 ∣ (𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))})
5049iuneq2i 4943 . . . . . . . . . 10 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)({𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)} ∩ {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)}) = 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))}
51 iunin2 4996 . . . . . . . . . 10 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)({𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)} ∩ {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)}) = ({𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)} ∩ 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)})
52 iunrab 4979 . . . . . . . . . 10 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} = {𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))}
5350, 51, 523eqtr3i 2855 . . . . . . . . 9 ({𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)} ∩ 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)}) = {𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))}
5446, 47, 533eqtr3i 2855 . . . . . . . 8 ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)})) = {𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))}
55 eqeq2 2836 . . . . . . . . . . . 12 (𝑦 = if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) → ({𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} = 𝑦 ↔ {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} = if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅)))
56 eqeq2 2836 . . . . . . . . . . . 12 (∅ = if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) → ({𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} = ∅ ↔ {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} = if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅)))
57 simprrl 779 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝐹𝑦) ⊆ 𝑏) ∧ (𝑥𝐴 ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))) → 𝑥𝑦)
5825adantr 483 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝐹𝑦) ⊆ 𝑏) → 𝑦𝐴)
5958sselda 3970 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝐹𝑦) ⊆ 𝑏) ∧ 𝑥𝑦) → 𝑥𝐴)
60 pm3.22 462 . . . . . . . . . . . . . . . . 17 (((𝐹𝑦) ⊆ 𝑏𝑥𝑦) → (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))
6160adantll 712 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝐹𝑦) ⊆ 𝑏) ∧ 𝑥𝑦) → (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))
6259, 61jca 514 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝐹𝑦) ⊆ 𝑏) ∧ 𝑥𝑦) → (𝑥𝐴 ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)))
6357, 62impbida 799 . . . . . . . . . . . . . 14 ((𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝐹𝑦) ⊆ 𝑏) → ((𝑥𝐴 ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)) ↔ 𝑥𝑦))
6463abbidv 2888 . . . . . . . . . . . . 13 ((𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝐹𝑦) ⊆ 𝑏) → {𝑥 ∣ (𝑥𝐴 ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} = {𝑥𝑥𝑦})
65 df-rab 3150 . . . . . . . . . . . . 13 {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} = {𝑥 ∣ (𝑥𝐴 ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))}
66 cvjust 2819 . . . . . . . . . . . . 13 𝑦 = {𝑥𝑥𝑦}
6764, 65, 663eqtr4g 2884 . . . . . . . . . . . 12 ((𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝐹𝑦) ⊆ 𝑏) → {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} = 𝑦)
68 simpr 487 . . . . . . . . . . . . . . . 16 ((𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏) → (𝐹𝑦) ⊆ 𝑏)
6968con3i 157 . . . . . . . . . . . . . . 15 (¬ (𝐹𝑦) ⊆ 𝑏 → ¬ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))
7069ralrimivw 3186 . . . . . . . . . . . . . 14 (¬ (𝐹𝑦) ⊆ 𝑏 → ∀𝑥𝐴 ¬ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))
71 rabeq0 4341 . . . . . . . . . . . . . 14 ({𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} = ∅ ↔ ∀𝑥𝐴 ¬ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))
7270, 71sylibr 236 . . . . . . . . . . . . 13 (¬ (𝐹𝑦) ⊆ 𝑏 → {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} = ∅)
7372adantl 484 . . . . . . . . . . . 12 ((𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ ¬ (𝐹𝑦) ⊆ 𝑏) → {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} = ∅)
7455, 56, 67, 73ifbothda 4507 . . . . . . . . . . 11 (𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) → {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} = if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅))
7574iuneq2i 4943 . . . . . . . . . 10 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} = 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅)
76 retop 23373 . . . . . . . . . . . . 13 (topGen‘ran (,)) ∈ Top
77 resttop 21771 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ Top ∧ 𝐴 ∈ dom vol) → ((topGen‘ran (,)) ↾t 𝐴) ∈ Top)
7876, 77mpan 688 . . . . . . . . . . . 12 (𝐴 ∈ dom vol → ((topGen‘ran (,)) ↾t 𝐴) ∈ Top)
79 0opn 21515 . . . . . . . . . . . . . . 15 (((topGen‘ran (,)) ↾t 𝐴) ∈ Top → ∅ ∈ ((topGen‘ran (,)) ↾t 𝐴))
8078, 79syl 17 . . . . . . . . . . . . . 14 (𝐴 ∈ dom vol → ∅ ∈ ((topGen‘ran (,)) ↾t 𝐴))
81 ifcl 4514 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ ∅ ∈ ((topGen‘ran (,)) ↾t 𝐴)) → if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) ∈ ((topGen‘ran (,)) ↾t 𝐴))
8281ancoms 461 . . . . . . . . . . . . . 14 ((∅ ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)) → if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) ∈ ((topGen‘ran (,)) ↾t 𝐴))
8380, 82sylan 582 . . . . . . . . . . . . 13 ((𝐴 ∈ dom vol ∧ 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)) → if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) ∈ ((topGen‘ran (,)) ↾t 𝐴))
8483ralrimiva 3185 . . . . . . . . . . . 12 (𝐴 ∈ dom vol → ∀𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) ∈ ((topGen‘ran (,)) ↾t 𝐴))
85 iunopn 21509 . . . . . . . . . . . 12 ((((topGen‘ran (,)) ↾t 𝐴) ∈ Top ∧ ∀𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) ∈ ((topGen‘ran (,)) ↾t 𝐴)) → 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) ∈ ((topGen‘ran (,)) ↾t 𝐴))
8678, 84, 85syl2anc 586 . . . . . . . . . . 11 (𝐴 ∈ dom vol → 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) ∈ ((topGen‘ran (,)) ↾t 𝐴))
87 eqid 2824 . . . . . . . . . . . 12 ((topGen‘ran (,)) ↾t 𝐴) = ((topGen‘ran (,)) ↾t 𝐴)
8887subopnmbl 24208 . . . . . . . . . . 11 ((𝐴 ∈ dom vol ∧ 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) ∈ ((topGen‘ran (,)) ↾t 𝐴)) → 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) ∈ dom vol)
8986, 88mpdan 685 . . . . . . . . . 10 (𝐴 ∈ dom vol → 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) ∈ dom vol)
9075, 89eqeltrid 2920 . . . . . . . . 9 (𝐴 ∈ dom vol → 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∈ dom vol)
91 difss 4111 . . . . . . . . . . . 12 ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ⊆ 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)}
92 ssrab2 4059 . . . . . . . . . . . . . 14 {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ⊆ 𝐴
9392rgenw 3153 . . . . . . . . . . . . 13 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ⊆ 𝐴
94 iunss 4972 . . . . . . . . . . . . 13 ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ⊆ 𝐴 ↔ ∀𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ⊆ 𝐴)
9593, 94mpbir 233 . . . . . . . . . . . 12 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ⊆ 𝐴
9691, 95sstri 3979 . . . . . . . . . . 11 ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ⊆ 𝐴
97 mblss 24135 . . . . . . . . . . 11 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
9896, 97sstrid 3981 . . . . . . . . . 10 (𝐴 ∈ dom vol → ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ⊆ ℝ)
99 ssdif 4119 . . . . . . . . . . . . . 14 ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ⊆ 𝐴 → ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ⊆ (𝐴 ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}))
10095, 99ax-mp 5 . . . . . . . . . . . . 13 ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ⊆ (𝐴 ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)})
101 ovex 7192 . . . . . . . . . . . . . . . . . . . . 21 (ℝ ↑m 𝐴) ∈ V
102101rabex 5238 . . . . . . . . . . . . . . . . . . . 20 {𝑓 ∈ (ℝ ↑m 𝐴) ∣ ∀𝑏 ∈ (topGen‘ran (,))((𝑓𝑥) ∈ 𝑏 → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝑓𝑦) ⊆ 𝑏))} ∈ V
103 eqid 2824 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐴 ↦ {𝑓 ∈ (ℝ ↑m 𝐴) ∣ ∀𝑏 ∈ (topGen‘ran (,))((𝑓𝑥) ∈ 𝑏 → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝑓𝑦) ⊆ 𝑏))}) = (𝑥𝐴 ↦ {𝑓 ∈ (ℝ ↑m 𝐴) ∣ ∀𝑏 ∈ (topGen‘ran (,))((𝑓𝑥) ∈ 𝑏 → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝑓𝑦) ⊆ 𝑏))})
104102, 103fnmpti 6494 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴 ↦ {𝑓 ∈ (ℝ ↑m 𝐴) ∣ ∀𝑏 ∈ (topGen‘ran (,))((𝑓𝑥) ∈ 𝑏 → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝑓𝑦) ⊆ 𝑏))}) Fn 𝐴
105 retopon 23375 . . . . . . . . . . . . . . . . . . . . . 22 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
106 resttopon 21772 . . . . . . . . . . . . . . . . . . . . . 22 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ 𝐴 ⊆ ℝ) → ((topGen‘ran (,)) ↾t 𝐴) ∈ (TopOn‘𝐴))
107105, 97, 106sylancr 589 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ dom vol → ((topGen‘ran (,)) ↾t 𝐴) ∈ (TopOn‘𝐴))
108 cnpfval 21845 . . . . . . . . . . . . . . . . . . . . 21 ((((topGen‘ran (,)) ↾t 𝐴) ∈ (TopOn‘𝐴) ∧ (topGen‘ran (,)) ∈ (TopOn‘ℝ)) → (((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) = (𝑥𝐴 ↦ {𝑓 ∈ (ℝ ↑m 𝐴) ∣ ∀𝑏 ∈ (topGen‘ran (,))((𝑓𝑥) ∈ 𝑏 → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝑓𝑦) ⊆ 𝑏))}))
109107, 105, 108sylancl 588 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ dom vol → (((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) = (𝑥𝐴 ↦ {𝑓 ∈ (ℝ ↑m 𝐴) ∣ ∀𝑏 ∈ (topGen‘ran (,))((𝑓𝑥) ∈ 𝑏 → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝑓𝑦) ⊆ 𝑏))}))
110109fneq1d 6449 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ dom vol → ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) Fn 𝐴 ↔ (𝑥𝐴 ↦ {𝑓 ∈ (ℝ ↑m 𝐴) ∣ ∀𝑏 ∈ (topGen‘ran (,))((𝑓𝑥) ∈ 𝑏 → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝑓𝑦) ⊆ 𝑏))}) Fn 𝐴))
111104, 110mpbiri 260 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ dom vol → (((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) Fn 𝐴)
112 elpreima 6831 . . . . . . . . . . . . . . . . . 18 ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) Fn 𝐴 → (𝑥 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) “ ( E “ {𝐹})) ↔ (𝑥𝐴 ∧ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∈ ( E “ {𝐹}))))
113111, 112syl 17 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ dom vol → (𝑥 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) “ ( E “ {𝐹})) ↔ (𝑥𝐴 ∧ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∈ ( E “ {𝐹}))))
114 rele 5702 . . . . . . . . . . . . . . . . . . . 20 Rel E
115 elrelimasn 5956 . . . . . . . . . . . . . . . . . . . 20 (Rel E → (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∈ ( E “ {𝐹}) ↔ 𝐹 E ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)))
116114, 115ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∈ ( E “ {𝐹}) ↔ 𝐹 E ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥))
117 fvex 6686 . . . . . . . . . . . . . . . . . . . 20 ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∈ V
118117epeli 5471 . . . . . . . . . . . . . . . . . . 19 (𝐹 E ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ↔ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥))
119116, 118bitr2i 278 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ↔ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∈ ( E “ {𝐹}))
120119anbi2i 624 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)) ↔ (𝑥𝐴 ∧ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∈ ( E “ {𝐹})))
121113, 120syl6rbbr 292 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom vol → ((𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)) ↔ 𝑥 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) “ ( E “ {𝐹}))))
122121abbidv 2888 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom vol → {𝑥 ∣ (𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥))} = {𝑥𝑥 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) “ ( E “ {𝐹}))})
123 df-rab 3150 . . . . . . . . . . . . . . 15 {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)} = {𝑥 ∣ (𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥))}
124 imaco 6107 . . . . . . . . . . . . . . . 16 (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}) = ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) “ ( E “ {𝐹}))
125 abid2 2960 . . . . . . . . . . . . . . . 16 {𝑥𝑥 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) “ ( E “ {𝐹}))} = ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) “ ( E “ {𝐹}))
126124, 125eqtr4i 2850 . . . . . . . . . . . . . . 15 (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}) = {𝑥𝑥 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) “ ( E “ {𝐹}))}
127122, 123, 1263eqtr4g 2884 . . . . . . . . . . . . . 14 (𝐴 ∈ dom vol → {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)} = (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))
128127difeq2d 4102 . . . . . . . . . . . . 13 (𝐴 ∈ dom vol → (𝐴 ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) = (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})))
129100, 128sseqtrid 4022 . . . . . . . . . . . 12 (𝐴 ∈ dom vol → ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ⊆ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})))
130 difss 4111 . . . . . . . . . . . . 13 (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ⊆ 𝐴
131130, 97sstrid 3981 . . . . . . . . . . . 12 (𝐴 ∈ dom vol → (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ⊆ ℝ)
132129, 131jca 514 . . . . . . . . . . 11 (𝐴 ∈ dom vol → (( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ⊆ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ∧ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ⊆ ℝ))
133 ovolssnul 24091 . . . . . . . . . . . 12 ((( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ⊆ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ∧ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ⊆ ℝ ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → (vol*‘( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)})) = 0)
1341333expa 1114 . . . . . . . . . . 11 (((( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ⊆ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ∧ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ⊆ ℝ) ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → (vol*‘( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)})) = 0)
135132, 134sylan 582 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → (vol*‘( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)})) = 0)
136 nulmbl 24139 . . . . . . . . . 10 ((( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ⊆ ℝ ∧ (vol*‘( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)})) = 0) → ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ∈ dom vol)
13798, 135, 136syl2an2r 683 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ∈ dom vol)
138 difmbl 24147 . . . . . . . . 9 (( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∈ dom vol ∧ ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ∈ dom vol) → ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)})) ∈ dom vol)
13990, 137, 138syl2an2r 683 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)})) ∈ dom vol)
14054, 139eqeltrrid 2921 . . . . . . 7 ((𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → {𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} ∈ dom vol)
141 ssrab2 4059 . . . . . . . . 9 {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)} ⊆ 𝐴
142141, 97sstrid 3981 . . . . . . . 8 (𝐴 ∈ dom vol → {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)} ⊆ ℝ)
143124eleq2i 2907 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}) ↔ 𝑥 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) “ ( E “ {𝐹})))
144 ibar 531 . . . . . . . . . . . . . . . . . 18 (𝑥𝐴 → (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∈ ( E “ {𝐹}) ↔ (𝑥𝐴 ∧ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∈ ( E “ {𝐹}))))
145119, 144syl5rbb 286 . . . . . . . . . . . . . . . . 17 (𝑥𝐴 → ((𝑥𝐴 ∧ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∈ ( E “ {𝐹})) ↔ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)))
146113, 145sylan9bb 512 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ dom vol ∧ 𝑥𝐴) → (𝑥 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) “ ( E “ {𝐹})) ↔ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)))
147143, 146syl5rbb 286 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom vol ∧ 𝑥𝐴) → (𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ↔ 𝑥 ∈ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})))
148147notbid 320 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom vol ∧ 𝑥𝐴) → (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ↔ ¬ 𝑥 ∈ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})))
149148biimpd 231 . . . . . . . . . . . . 13 ((𝐴 ∈ dom vol ∧ 𝑥𝐴) → (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) → ¬ 𝑥 ∈ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})))
150149adantrd 494 . . . . . . . . . . . 12 ((𝐴 ∈ dom vol ∧ 𝑥𝐴) → ((¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏) → ¬ 𝑥 ∈ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})))
151150ss2rabdv 4055 . . . . . . . . . . 11 (𝐴 ∈ dom vol → {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)} ⊆ {𝑥𝐴 ∣ ¬ 𝑥 ∈ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})})
152 dfdif2 3948 . . . . . . . . . . 11 (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) = {𝑥𝐴 ∣ ¬ 𝑥 ∈ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})}
153151, 152sseqtrrdi 4021 . . . . . . . . . 10 (𝐴 ∈ dom vol → {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)} ⊆ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})))
154153, 131jca 514 . . . . . . . . 9 (𝐴 ∈ dom vol → ({𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)} ⊆ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ∧ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ⊆ ℝ))
155 ovolssnul 24091 . . . . . . . . . 10 (({𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)} ⊆ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ∧ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ⊆ ℝ ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → (vol*‘{𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}) = 0)
1561553expa 1114 . . . . . . . . 9 ((({𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)} ⊆ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ∧ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ⊆ ℝ) ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → (vol*‘{𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}) = 0)
157154, 156sylan 582 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → (vol*‘{𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}) = 0)
158 nulmbl 24139 . . . . . . . 8 (({𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)} ⊆ ℝ ∧ (vol*‘{𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}) = 0) → {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)} ∈ dom vol)
159142, 157, 158syl2an2r 683 . . . . . . 7 ((𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)} ∈ dom vol)
160 unmbl 24141 . . . . . . 7 (({𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} ∈ dom vol ∧ {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)} ∈ dom vol) → ({𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} ∪ {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}) ∈ dom vol)
161140, 159, 160syl2anc 586 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → ({𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} ∪ {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}) ∈ dom vol)
1621613adant1 1126 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → ({𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} ∪ {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}) ∈ dom vol)
163162adantr 483 . . . 4 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) ∧ 𝑏 ∈ ran (,)) → ({𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} ∪ {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}) ∈ dom vol)
16445, 163eqeltrd 2916 . . 3 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) ∧ 𝑏 ∈ ran (,)) → (𝐹𝑏) ∈ dom vol)
165164ralrimiva 3185 . 2 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → ∀𝑏 ∈ ran (,)(𝐹𝑏) ∈ dom vol)
166 ismbf 24232 . . 3 (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑏 ∈ ran (,)(𝐹𝑏) ∈ dom vol))
1671663ad2ant1 1129 . 2 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → (𝐹 ∈ MblFn ↔ ∀𝑏 ∈ ran (,)(𝐹𝑏) ∈ dom vol))
168165, 167mpbird 259 1 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → 𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1536  wcel 2113  {cab 2802  wral 3141  wrex 3142  {crab 3145  cdif 3936  cun 3937  cin 3938  wss 3939  c0 4294  ifcif 4470  𝒫 cpw 4542  {csn 4570   ciun 4922   class class class wbr 5069  cmpt 5149   E cep 5467  ccnv 5557  dom cdm 5558  ran crn 5559  cima 5561  ccom 5562  Rel wrel 5563   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7159  m cmap 8409  cr 10539  0cc0 10540  (,)cioo 12741  t crest 16697  topGenctg 16714  Topctop 21504  TopOnctopon 21521  TopBasesctb 21556   CnP ccnp 21836  vol*covol 24066  volcvol 24067  MblFncmbf 24218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-disj 5035  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-omul 8110  df-er 8292  df-map 8411  df-pm 8412  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-dju 9333  df-card 9371  df-acn 9374  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-rlim 14849  df-sum 15046  df-rest 16699  df-topgen 16720  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-top 21505  df-topon 21522  df-bases 21557  df-cnp 21839  df-cmp 21998  df-ovol 24068  df-vol 24069  df-mbf 24223
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator