Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnambpcma Structured version   Visualization version   GIF version

Theorem cnambpcma 40271
Description: ((a-b)+c)-a = c-a holds for complex numbers a,b,c. (Contributed by Alexander van der Vekens, 23-Mar-2018.)
Assertion
Ref Expression
cnambpcma ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴𝐵) + 𝐶) − 𝐴) = (𝐶𝐵))

Proof of Theorem cnambpcma
StepHypRef Expression
1 subcl 10031 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
213adant3 1073 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
3 simp3 1055 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ)
4 simp1 1053 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ)
52, 3, 4addsubd 10164 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴𝐵) + 𝐶) − 𝐴) = (((𝐴𝐵) − 𝐴) + 𝐶))
6 simpl 471 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
7 simpr 475 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
86, 7, 63jca 1234 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ))
983adant3 1073 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ))
10 sub32 10066 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴𝐵) − 𝐴) = ((𝐴𝐴) − 𝐵))
119, 10syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐵) − 𝐴) = ((𝐴𝐴) − 𝐵))
1211oveq1d 6441 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴𝐵) − 𝐴) + 𝐶) = (((𝐴𝐴) − 𝐵) + 𝐶))
13 subcl 10031 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴𝐴) ∈ ℂ)
1413anidms 674 . . . . 5 (𝐴 ∈ ℂ → (𝐴𝐴) ∈ ℂ)
15143ad2ant1 1074 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐴) ∈ ℂ)
16 simp2 1054 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℂ)
1715, 16, 3subadd23d 10165 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴𝐴) − 𝐵) + 𝐶) = ((𝐴𝐴) + (𝐶𝐵)))
18 subid 10051 . . . . 5 (𝐴 ∈ ℂ → (𝐴𝐴) = 0)
1918oveq1d 6441 . . . 4 (𝐴 ∈ ℂ → ((𝐴𝐴) + (𝐶𝐵)) = (0 + (𝐶𝐵)))
20193ad2ant1 1074 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐴) + (𝐶𝐵)) = (0 + (𝐶𝐵)))
21 subcl 10031 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶𝐵) ∈ ℂ)
2221ancoms 467 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶𝐵) ∈ ℂ)
2322addid2d 9988 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (0 + (𝐶𝐵)) = (𝐶𝐵))
24233adant1 1071 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (0 + (𝐶𝐵)) = (𝐶𝐵))
2517, 20, 243eqtrd 2552 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴𝐴) − 𝐵) + 𝐶) = (𝐶𝐵))
265, 12, 253eqtrd 2552 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴𝐵) + 𝐶) − 𝐴) = (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1938  (class class class)co 6426  cc 9689  0cc0 9691   + caddc 9694  cmin 10017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6723  ax-resscn 9748  ax-1cn 9749  ax-icn 9750  ax-addcl 9751  ax-addrcl 9752  ax-mulcl 9753  ax-mulrcl 9754  ax-mulcom 9755  ax-addass 9756  ax-mulass 9757  ax-distr 9758  ax-i2m1 9759  ax-1ne0 9760  ax-1rid 9761  ax-rnegex 9762  ax-rrecex 9763  ax-cnre 9764  ax-pre-lttri 9765  ax-pre-lttrn 9766  ax-pre-ltadd 9767
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-op 4035  df-uni 4271  df-br 4482  df-opab 4542  df-mpt 4543  df-id 4847  df-po 4853  df-so 4854  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-riota 6388  df-ov 6429  df-oprab 6430  df-mpt2 6431  df-er 7505  df-en 7718  df-dom 7719  df-sdom 7720  df-pnf 9831  df-mnf 9832  df-ltxr 9834  df-sub 10019
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator