Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfiooicc Structured version   Visualization version   GIF version

Theorem cncfiooicc 39411
 Description: A continuous function 𝐹 on an open interval (𝐴(,)𝐵) can be extended to a continuous function 𝐺 on the corresponding closed interval, if it has a finite right limit 𝑅 in 𝐴 and a finite left limit 𝐿 in 𝐵. 𝐹 can be complex valued. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfiooicc.x 𝑥𝜑
cncfiooicc.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
cncfiooicc.a (𝜑𝐴 ∈ ℝ)
cncfiooicc.b (𝜑𝐵 ∈ ℝ)
cncfiooicc.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
cncfiooicc.l (𝜑𝐿 ∈ (𝐹 lim 𝐵))
cncfiooicc.r (𝜑𝑅 ∈ (𝐹 lim 𝐴))
Assertion
Ref Expression
cncfiooicc (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐿   𝑥,𝑅   𝜑,𝑥
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem cncfiooicc
StepHypRef Expression
1 nfv 1840 . . 3 𝑥(𝜑𝐴 < 𝐵)
2 cncfiooicc.g . . 3 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
3 cncfiooicc.a . . . 4 (𝜑𝐴 ∈ ℝ)
43adantr 481 . . 3 ((𝜑𝐴 < 𝐵) → 𝐴 ∈ ℝ)
5 cncfiooicc.b . . . 4 (𝜑𝐵 ∈ ℝ)
65adantr 481 . . 3 ((𝜑𝐴 < 𝐵) → 𝐵 ∈ ℝ)
7 simpr 477 . . 3 ((𝜑𝐴 < 𝐵) → 𝐴 < 𝐵)
8 cncfiooicc.f . . . 4 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
98adantr 481 . . 3 ((𝜑𝐴 < 𝐵) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
10 cncfiooicc.l . . . 4 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
1110adantr 481 . . 3 ((𝜑𝐴 < 𝐵) → 𝐿 ∈ (𝐹 lim 𝐵))
12 cncfiooicc.r . . . 4 (𝜑𝑅 ∈ (𝐹 lim 𝐴))
1312adantr 481 . . 3 ((𝜑𝐴 < 𝐵) → 𝑅 ∈ (𝐹 lim 𝐴))
141, 2, 4, 6, 7, 9, 11, 13cncfiooicclem1 39410 . 2 ((𝜑𝐴 < 𝐵) → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
15 limccl 23545 . . . . . . . . . 10 (𝐹 lim 𝐴) ⊆ ℂ
1615, 12sseldi 3581 . . . . . . . . 9 (𝜑𝑅 ∈ ℂ)
1716snssd 4309 . . . . . . . 8 (𝜑 → {𝑅} ⊆ ℂ)
18 ssid 3603 . . . . . . . . 9 ℂ ⊆ ℂ
1918a1i 11 . . . . . . . 8 (𝜑 → ℂ ⊆ ℂ)
20 cncfss 22610 . . . . . . . 8 (({𝑅} ⊆ ℂ ∧ ℂ ⊆ ℂ) → ({𝐴}–cn→{𝑅}) ⊆ ({𝐴}–cn→ℂ))
2117, 19, 20syl2anc 692 . . . . . . 7 (𝜑 → ({𝐴}–cn→{𝑅}) ⊆ ({𝐴}–cn→ℂ))
2221adantr 481 . . . . . 6 ((𝜑𝐴 = 𝐵) → ({𝐴}–cn→{𝑅}) ⊆ ({𝐴}–cn→ℂ))
233rexrd 10033 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
24 iccid 12162 . . . . . . . . . . . 12 (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})
2523, 24syl 17 . . . . . . . . . . 11 (𝜑 → (𝐴[,]𝐴) = {𝐴})
26 oveq2 6612 . . . . . . . . . . 11 (𝐴 = 𝐵 → (𝐴[,]𝐴) = (𝐴[,]𝐵))
2725, 26sylan9req 2676 . . . . . . . . . 10 ((𝜑𝐴 = 𝐵) → {𝐴} = (𝐴[,]𝐵))
2827eqcomd 2627 . . . . . . . . 9 ((𝜑𝐴 = 𝐵) → (𝐴[,]𝐵) = {𝐴})
29 simpr 477 . . . . . . . . . . . 12 (((𝜑𝐴 = 𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
3028adantr 481 . . . . . . . . . . . 12 (((𝜑𝐴 = 𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = {𝐴})
3129, 30eleqtrd 2700 . . . . . . . . . . 11 (((𝜑𝐴 = 𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ {𝐴})
32 elsni 4165 . . . . . . . . . . 11 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
3331, 32syl 17 . . . . . . . . . 10 (((𝜑𝐴 = 𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 = 𝐴)
3433iftrued 4066 . . . . . . . . 9 (((𝜑𝐴 = 𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝑅)
3528, 34mpteq12dva 4692 . . . . . . . 8 ((𝜑𝐴 = 𝐵) → (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))) = (𝑥 ∈ {𝐴} ↦ 𝑅))
362, 35syl5eq 2667 . . . . . . 7 ((𝜑𝐴 = 𝐵) → 𝐺 = (𝑥 ∈ {𝐴} ↦ 𝑅))
373recnd 10012 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
3837adantr 481 . . . . . . . 8 ((𝜑𝐴 = 𝐵) → 𝐴 ∈ ℂ)
3916adantr 481 . . . . . . . 8 ((𝜑𝐴 = 𝐵) → 𝑅 ∈ ℂ)
40 cncfdmsn 39407 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (𝑥 ∈ {𝐴} ↦ 𝑅) ∈ ({𝐴}–cn→{𝑅}))
4138, 39, 40syl2anc 692 . . . . . . 7 ((𝜑𝐴 = 𝐵) → (𝑥 ∈ {𝐴} ↦ 𝑅) ∈ ({𝐴}–cn→{𝑅}))
4236, 41eqeltrd 2698 . . . . . 6 ((𝜑𝐴 = 𝐵) → 𝐺 ∈ ({𝐴}–cn→{𝑅}))
4322, 42sseldd 3584 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐺 ∈ ({𝐴}–cn→ℂ))
4427oveq1d 6619 . . . . 5 ((𝜑𝐴 = 𝐵) → ({𝐴}–cn→ℂ) = ((𝐴[,]𝐵)–cn→ℂ))
4543, 44eleqtrd 2700 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
4645adantlr 750 . . 3 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ 𝐴 = 𝐵) → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
47 simpll 789 . . . 4 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝜑)
48 eqcom 2628 . . . . . . . . 9 (𝐵 = 𝐴𝐴 = 𝐵)
4948biimpi 206 . . . . . . . 8 (𝐵 = 𝐴𝐴 = 𝐵)
5049con3i 150 . . . . . . 7 𝐴 = 𝐵 → ¬ 𝐵 = 𝐴)
5150adantl 482 . . . . . 6 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐵 = 𝐴)
52 simplr 791 . . . . . 6 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 < 𝐵)
53 pm4.56 516 . . . . . . 7 ((¬ 𝐵 = 𝐴 ∧ ¬ 𝐴 < 𝐵) ↔ ¬ (𝐵 = 𝐴𝐴 < 𝐵))
5453biimpi 206 . . . . . 6 ((¬ 𝐵 = 𝐴 ∧ ¬ 𝐴 < 𝐵) → ¬ (𝐵 = 𝐴𝐴 < 𝐵))
5551, 52, 54syl2anc 692 . . . . 5 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → ¬ (𝐵 = 𝐴𝐴 < 𝐵))
5647, 5syl 17 . . . . . 6 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐵 ∈ ℝ)
5747, 3syl 17 . . . . . 6 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ ℝ)
5856, 57lttrid 10119 . . . . 5 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → (𝐵 < 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴 < 𝐵)))
5955, 58mpbird 247 . . . 4 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐵 < 𝐴)
60 0ss 3944 . . . . . . . 8 ∅ ⊆ ℂ
61 eqid 2621 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
6261cnfldtop 22497 . . . . . . . . . . 11 (TopOpen‘ℂfld) ∈ Top
63 rest0 20883 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ∅) = {∅})
6462, 63ax-mp 5 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t ∅) = {∅}
6564eqcomi 2630 . . . . . . . . 9 {∅} = ((TopOpen‘ℂfld) ↾t ∅)
6661, 65, 65cncfcn 22620 . . . . . . . 8 ((∅ ⊆ ℂ ∧ ∅ ⊆ ℂ) → (∅–cn→∅) = ({∅} Cn {∅}))
6760, 60, 66mp2an 707 . . . . . . 7 (∅–cn→∅) = ({∅} Cn {∅})
68 cncfss 22610 . . . . . . . 8 ((∅ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (∅–cn→∅) ⊆ (∅–cn→ℂ))
6960, 18, 68mp2an 707 . . . . . . 7 (∅–cn→∅) ⊆ (∅–cn→ℂ)
7067, 69eqsstr3i 3615 . . . . . 6 ({∅} Cn {∅}) ⊆ (∅–cn→ℂ)
712a1i 11 . . . . . . . 8 ((𝜑𝐵 < 𝐴) → 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))))
72 simpr 477 . . . . . . . . . 10 ((𝜑𝐵 < 𝐴) → 𝐵 < 𝐴)
7323adantr 481 . . . . . . . . . . 11 ((𝜑𝐵 < 𝐴) → 𝐴 ∈ ℝ*)
745rexrd 10033 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ*)
7574adantr 481 . . . . . . . . . . 11 ((𝜑𝐵 < 𝐴) → 𝐵 ∈ ℝ*)
76 icc0 12165 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
7773, 75, 76syl2anc 692 . . . . . . . . . 10 ((𝜑𝐵 < 𝐴) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
7872, 77mpbird 247 . . . . . . . . 9 ((𝜑𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅)
7978mpteq1d 4698 . . . . . . . 8 ((𝜑𝐵 < 𝐴) → (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))) = (𝑥 ∈ ∅ ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))))
80 mpt0 5978 . . . . . . . . 9 (𝑥 ∈ ∅ ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))) = ∅
8180a1i 11 . . . . . . . 8 ((𝜑𝐵 < 𝐴) → (𝑥 ∈ ∅ ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))) = ∅)
8271, 79, 813eqtrd 2659 . . . . . . 7 ((𝜑𝐵 < 𝐴) → 𝐺 = ∅)
83 0cnf 39393 . . . . . . 7 ∅ ∈ ({∅} Cn {∅})
8482, 83syl6eqel 2706 . . . . . 6 ((𝜑𝐵 < 𝐴) → 𝐺 ∈ ({∅} Cn {∅}))
8570, 84sseldi 3581 . . . . 5 ((𝜑𝐵 < 𝐴) → 𝐺 ∈ (∅–cn→ℂ))
8678eqcomd 2627 . . . . . 6 ((𝜑𝐵 < 𝐴) → ∅ = (𝐴[,]𝐵))
8786oveq1d 6619 . . . . 5 ((𝜑𝐵 < 𝐴) → (∅–cn→ℂ) = ((𝐴[,]𝐵)–cn→ℂ))
8885, 87eleqtrd 2700 . . . 4 ((𝜑𝐵 < 𝐴) → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
8947, 59, 88syl2anc 692 . . 3 (((𝜑 ∧ ¬ 𝐴 < 𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
9046, 89pm2.61dan 831 . 2 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
9114, 90pm2.61dan 831 1 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 383   ∧ wa 384   = wceq 1480  Ⅎwnf 1705   ∈ wcel 1987   ⊆ wss 3555  ∅c0 3891  ifcif 4058  {csn 4148   class class class wbr 4613   ↦ cmpt 4673  ‘cfv 5847  (class class class)co 6604  ℂcc 9878  ℝcr 9879  ℝ*cxr 10017   < clt 10018  (,)cioo 12117  [,]cicc 12120   ↾t crest 16002  TopOpenctopn 16003  ℂfldccnfld 19665  Topctop 20617   Cn ccn 20938  –cn→ccncf 22587   limℂ climc 23532 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fi 8261  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ioc 12122  df-ico 12123  df-icc 12124  df-fz 12269  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-plusg 15875  df-mulr 15876  df-starv 15877  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-rest 16004  df-topn 16005  df-topgen 16025  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-cn 20941  df-cnp 20942  df-xms 22035  df-ms 22036  df-cncf 22589  df-limc 23536 This theorem is referenced by:  cncfiooiccre  39412  cncfioobd  39414  itgioocnicc  39500  iblcncfioo  39501  fourierdlem73  39703  fourierdlem81  39711  fourierdlem82  39712
 Copyright terms: Public domain W3C validator