Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfiooiccre Structured version   Visualization version   GIF version

Theorem cncfiooiccre 39409
 Description: A continuous function 𝐹 on an open interval (𝐴(,)𝐵) can be extended to a continuous function 𝐺 on the corresponding closed interval, if it has a finite right limit 𝑅 in 𝐴 and a finite left limit 𝐿 in 𝐵. 𝐹 is assumed to be real-valued. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfiooiccre.x 𝑥𝜑
cncfiooiccre.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
cncfiooiccre.a (𝜑𝐴 ∈ ℝ)
cncfiooiccre.b (𝜑𝐵 ∈ ℝ)
cncfiooiccre.altb (𝜑𝐴 < 𝐵)
cncfiooiccre.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
cncfiooiccre.l (𝜑𝐿 ∈ (𝐹 lim 𝐵))
cncfiooiccre.r (𝜑𝑅 ∈ (𝐹 lim 𝐴))
Assertion
Ref Expression
cncfiooiccre (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐿   𝑥,𝑅   𝜑,𝑥
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem cncfiooiccre
StepHypRef Expression
1 iftrue 4064 . . . . . . 7 (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝑅)
21adantl 482 . . . . . 6 ((𝜑𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝑅)
3 cncfiooiccre.f . . . . . . . . 9 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
4 cncff 22604 . . . . . . . . 9 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
53, 4syl 17 . . . . . . . 8 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
6 ioosscn 39124 . . . . . . . . 9 (𝐴(,)𝐵) ⊆ ℂ
76a1i 11 . . . . . . . 8 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
8 eqid 2621 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
9 cncfiooiccre.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
109rexrd 10033 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ*)
11 cncfiooiccre.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
12 cncfiooiccre.altb . . . . . . . . 9 (𝜑𝐴 < 𝐵)
138, 10, 11, 12lptioo1cn 39279 . . . . . . . 8 (𝜑𝐴 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)))
14 cncfiooiccre.r . . . . . . . 8 (𝜑𝑅 ∈ (𝐹 lim 𝐴))
155, 7, 13, 14limcrecl 39262 . . . . . . 7 (𝜑𝑅 ∈ ℝ)
1615adantr 481 . . . . . 6 ((𝜑𝑥 = 𝐴) → 𝑅 ∈ ℝ)
172, 16eqeltrd 2698 . . . . 5 ((𝜑𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℝ)
1817adantlr 750 . . . 4 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℝ)
19 iffalse 4067 . . . . . . . . 9 𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
20 iftrue 4064 . . . . . . . . 9 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = 𝐿)
2119, 20sylan9eq 2675 . . . . . . . 8 ((¬ 𝑥 = 𝐴𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝐿)
2221adantll 749 . . . . . . 7 (((𝜑 ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝐿)
2311rexrd 10033 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ*)
248, 23, 9, 12lptioo2cn 39278 . . . . . . . . 9 (𝜑𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)))
25 cncfiooiccre.l . . . . . . . . 9 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
265, 7, 24, 25limcrecl 39262 . . . . . . . 8 (𝜑𝐿 ∈ ℝ)
2726ad2antrr 761 . . . . . . 7 (((𝜑 ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → 𝐿 ∈ ℝ)
2822, 27eqeltrd 2698 . . . . . 6 (((𝜑 ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℝ)
2928adantllr 754 . . . . 5 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℝ)
30 iffalse 4067 . . . . . . . 8 𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = (𝐹𝑥))
3119, 30sylan9eq 2675 . . . . . . 7 ((¬ 𝑥 = 𝐴 ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = (𝐹𝑥))
3231adantll 749 . . . . . 6 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = (𝐹𝑥))
335ad3antrrr 765 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
3423ad3antrrr 765 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴 ∈ ℝ*)
3510ad3antrrr 765 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈ ℝ*)
3611adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
379adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
38 simpr 477 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
39 eliccre 39136 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
4036, 37, 38, 39syl3anc 1323 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
4140ad2antrr 761 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ℝ)
4211ad2antrr 761 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 ∈ ℝ)
4340adantr 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ ℝ)
4423ad2antrr 761 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 ∈ ℝ*)
4510ad2antrr 761 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐵 ∈ ℝ*)
4638adantr 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ (𝐴[,]𝐵))
47 iccgelb 12172 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝑥)
4844, 45, 46, 47syl3anc 1323 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴𝑥)
49 neqne 2798 . . . . . . . . . . 11 𝑥 = 𝐴𝑥𝐴)
5049adantl 482 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝑥𝐴)
5142, 43, 48, 50leneltd 10135 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 < 𝑥)
5251adantr 481 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴 < 𝑥)
5340adantr 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ℝ)
549ad2antrr 761 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈ ℝ)
5523ad2antrr 761 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝐴 ∈ ℝ*)
5610ad2antrr 761 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈ ℝ*)
5738adantr 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴[,]𝐵))
58 iccleub 12171 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
5955, 56, 57, 58syl3anc 1323 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥𝐵)
60 neqne 2798 . . . . . . . . . . . 12 𝑥 = 𝐵𝑥𝐵)
6160necomd 2845 . . . . . . . . . . 11 𝑥 = 𝐵𝐵𝑥)
6261adantl 482 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝐵𝑥)
6353, 54, 59, 62leneltd 10135 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 < 𝐵)
6463adantlr 750 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 < 𝐵)
6534, 35, 41, 52, 64eliood 39128 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴(,)𝐵))
6633, 65ffvelrnd 6316 . . . . . 6 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝐹𝑥) ∈ ℝ)
6732, 66eqeltrd 2698 . . . . 5 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℝ)
6829, 67pm2.61dan 831 . . . 4 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℝ)
6918, 68pm2.61dan 831 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℝ)
70 cncfiooiccre.g . . 3 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
7169, 70fmptd 6340 . 2 (𝜑𝐺:(𝐴[,]𝐵)⟶ℝ)
72 ax-resscn 9937 . . 3 ℝ ⊆ ℂ
73 cncfiooiccre.x . . . 4 𝑥𝜑
74 ssid 3603 . . . . . 6 ℂ ⊆ ℂ
75 cncfss 22610 . . . . . 6 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℝ) ⊆ ((𝐴(,)𝐵)–cn→ℂ))
7672, 74, 75mp2an 707 . . . . 5 ((𝐴(,)𝐵)–cn→ℝ) ⊆ ((𝐴(,)𝐵)–cn→ℂ)
7776, 3sseldi 3581 . . . 4 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
7873, 70, 11, 9, 77, 25, 14cncfiooicc 39408 . . 3 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
79 cncffvrn 22609 . . 3 ((ℝ ⊆ ℂ ∧ 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ) ↔ 𝐺:(𝐴[,]𝐵)⟶ℝ))
8072, 78, 79sylancr 694 . 2 (𝜑 → (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ) ↔ 𝐺:(𝐴[,]𝐵)⟶ℝ))
8171, 80mpbird 247 1 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480  Ⅎwnf 1705   ∈ wcel 1987   ≠ wne 2790   ⊆ wss 3555  ifcif 4058   class class class wbr 4613   ↦ cmpt 4673  ⟶wf 5843  ‘cfv 5847  (class class class)co 6604  ℂcc 9878  ℝcr 9879  ℝ*cxr 10017   < clt 10018   ≤ cle 10019  (,)cioo 12117  [,]cicc 12120  TopOpenctopn 16003  ℂfldccnfld 19665  –cn→ccncf 22587   limℂ climc 23532 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fi 8261  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ioc 12122  df-ico 12123  df-icc 12124  df-fz 12269  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-plusg 15875  df-mulr 15876  df-starv 15877  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-rest 16004  df-topn 16005  df-topgen 16025  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850  df-cn 20941  df-cnp 20942  df-xms 22035  df-ms 22036  df-cncf 22589  df-limc 23536 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator