Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfuni Structured version   Visualization version   GIF version

Theorem cncfuni 40417
Description: A function is continuous if it's domain is the union of sets over which the function is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfuni.acn (𝜑𝐴 ⊆ ℂ)
cncfuni.f (𝜑𝐹:𝐴⟶ℂ)
cncfuni.auni (𝜑𝐴 𝐵)
cncfuni.opn ((𝜑𝑏𝐵) → (𝐴𝑏) ∈ ((TopOpen‘ℂfld) ↾t 𝐴))
cncfuni.fcn ((𝜑𝑏𝐵) → (𝐹𝑏) ∈ ((𝐴𝑏)–cn→ℂ))
Assertion
Ref Expression
cncfuni (𝜑𝐹 ∈ (𝐴cn→ℂ))
Distinct variable groups:   𝐴,𝑏   𝐵,𝑏   𝐹,𝑏   𝜑,𝑏

Proof of Theorem cncfuni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cncfuni.f . . 3 (𝜑𝐹:𝐴⟶ℂ)
2 cncfuni.auni . . . . . . 7 (𝜑𝐴 𝐵)
32sselda 3636 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥 𝐵)
4 eluni2 4472 . . . . . 6 (𝑥 𝐵 ↔ ∃𝑏𝐵 𝑥𝑏)
53, 4sylib 208 . . . . 5 ((𝜑𝑥𝐴) → ∃𝑏𝐵 𝑥𝑏)
6 simp1l 1105 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑏𝐵𝑥𝑏) → 𝜑)
7 simp2 1082 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑏𝐵𝑥𝑏) → 𝑏𝐵)
8 elin 3829 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝑏) ↔ (𝑥𝐴𝑥𝑏))
98biimpri 218 . . . . . . . . 9 ((𝑥𝐴𝑥𝑏) → 𝑥 ∈ (𝐴𝑏))
109adantll 750 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑥𝑏) → 𝑥 ∈ (𝐴𝑏))
11103adant2 1100 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑏𝐵𝑥𝑏) → 𝑥 ∈ (𝐴𝑏))
12 cncfuni.fcn . . . . . . . . . . . . . 14 ((𝜑𝑏𝐵) → (𝐹𝑏) ∈ ((𝐴𝑏)–cn→ℂ))
13 fdm 6089 . . . . . . . . . . . . . . . . . . . . 21 (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴)
141, 13syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom 𝐹 = 𝐴)
1514ineq2d 3847 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑏 ∩ dom 𝐹) = (𝑏𝐴))
16 incom 3838 . . . . . . . . . . . . . . . . . . 19 (𝑏𝐴) = (𝐴𝑏)
1715, 16syl6req 2702 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴𝑏) = (𝑏 ∩ dom 𝐹))
1817reseq2d 5428 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 ↾ (𝐴𝑏)) = (𝐹 ↾ (𝑏 ∩ dom 𝐹)))
19 frel 6088 . . . . . . . . . . . . . . . . . . 19 (𝐹:𝐴⟶ℂ → Rel 𝐹)
201, 19syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → Rel 𝐹)
21 resindm 5479 . . . . . . . . . . . . . . . . . 18 (Rel 𝐹 → (𝐹 ↾ (𝑏 ∩ dom 𝐹)) = (𝐹𝑏))
2220, 21syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 ↾ (𝑏 ∩ dom 𝐹)) = (𝐹𝑏))
2318, 22eqtrd 2685 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 ↾ (𝐴𝑏)) = (𝐹𝑏))
24 inss1 3866 . . . . . . . . . . . . . . . . . . . 20 (𝐴𝑏) ⊆ 𝐴
2524a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴𝑏) ⊆ 𝐴)
26 cncfuni.acn . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ⊆ ℂ)
2725, 26sstrd 3646 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴𝑏) ⊆ ℂ)
28 ssid 3657 . . . . . . . . . . . . . . . . . . 19 ℂ ⊆ ℂ
2928a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → ℂ ⊆ ℂ)
30 eqid 2651 . . . . . . . . . . . . . . . . . . 19 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
31 eqid 2651 . . . . . . . . . . . . . . . . . . 19 ((TopOpen‘ℂfld) ↾t (𝐴𝑏)) = ((TopOpen‘ℂfld) ↾t (𝐴𝑏))
3230cnfldtop 22634 . . . . . . . . . . . . . . . . . . . . 21 (TopOpen‘ℂfld) ∈ Top
33 unicntop 22636 . . . . . . . . . . . . . . . . . . . . . 22 ℂ = (TopOpen‘ℂfld)
3433restid 16141 . . . . . . . . . . . . . . . . . . . . 21 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
3532, 34ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
3635eqcomi 2660 . . . . . . . . . . . . . . . . . . 19 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
3730, 31, 36cncfcn 22759 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑏) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴𝑏)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)))
3827, 29, 37syl2anc 694 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐴𝑏)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)))
3938eqcomd 2657 . . . . . . . . . . . . . . . 16 (𝜑 → (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)) = ((𝐴𝑏)–cn→ℂ))
4023, 39eleq12d 2724 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐹 ↾ (𝐴𝑏)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)) ↔ (𝐹𝑏) ∈ ((𝐴𝑏)–cn→ℂ)))
4140adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑏𝐵) → ((𝐹 ↾ (𝐴𝑏)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)) ↔ (𝐹𝑏) ∈ ((𝐴𝑏)–cn→ℂ)))
4212, 41mpbird 247 . . . . . . . . . . . . 13 ((𝜑𝑏𝐵) → (𝐹 ↾ (𝐴𝑏)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)))
43423adant3 1101 . . . . . . . . . . . 12 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐹 ↾ (𝐴𝑏)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)))
4430cnfldtopon 22633 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
4544a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
46 resttopon 21013 . . . . . . . . . . . . . . 15 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴𝑏) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴𝑏)) ∈ (TopOn‘(𝐴𝑏)))
4745, 27, 46syl2anc 694 . . . . . . . . . . . . . 14 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴𝑏)) ∈ (TopOn‘(𝐴𝑏)))
48473ad2ant1 1102 . . . . . . . . . . . . 13 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((TopOpen‘ℂfld) ↾t (𝐴𝑏)) ∈ (TopOn‘(𝐴𝑏)))
4944a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
50 cncnp 21132 . . . . . . . . . . . . 13 ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) ∈ (TopOn‘(𝐴𝑏)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → ((𝐹 ↾ (𝐴𝑏)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)) ↔ ((𝐹 ↾ (𝐴𝑏)):(𝐴𝑏)⟶ℂ ∧ ∀𝑥 ∈ (𝐴𝑏)(𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))))
5148, 49, 50syl2anc 694 . . . . . . . . . . . 12 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((𝐹 ↾ (𝐴𝑏)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) Cn (TopOpen‘ℂfld)) ↔ ((𝐹 ↾ (𝐴𝑏)):(𝐴𝑏)⟶ℂ ∧ ∀𝑥 ∈ (𝐴𝑏)(𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))))
5243, 51mpbid 222 . . . . . . . . . . 11 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((𝐹 ↾ (𝐴𝑏)):(𝐴𝑏)⟶ℂ ∧ ∀𝑥 ∈ (𝐴𝑏)(𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥)))
5352simprd 478 . . . . . . . . . 10 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ∀𝑥 ∈ (𝐴𝑏)(𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))
54 simp3 1083 . . . . . . . . . 10 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → 𝑥 ∈ (𝐴𝑏))
55 rspa 2959 . . . . . . . . . 10 ((∀𝑥 ∈ (𝐴𝑏)(𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥) ∧ 𝑥 ∈ (𝐴𝑏)) → (𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))
5653, 54, 55syl2anc 694 . . . . . . . . 9 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐹 ↾ (𝐴𝑏)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))
5732a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
58 cnex 10055 . . . . . . . . . . . . . . . 16 ℂ ∈ V
5958ssex 4835 . . . . . . . . . . . . . . 15 (𝐴 ⊆ ℂ → 𝐴 ∈ V)
6026, 59syl 17 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ V)
61 restabs 21017 . . . . . . . . . . . . . 14 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴𝑏) ⊆ 𝐴𝐴 ∈ V) → (((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) = ((TopOpen‘ℂfld) ↾t (𝐴𝑏)))
6257, 25, 60, 61syl3anc 1366 . . . . . . . . . . . . 13 (𝜑 → (((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) = ((TopOpen‘ℂfld) ↾t (𝐴𝑏)))
6362eqcomd 2657 . . . . . . . . . . . 12 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴𝑏)) = (((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)))
6463oveq1d 6705 . . . . . . . . . . 11 (𝜑 → (((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld)) = ((((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld)))
6564fveq1d 6231 . . . . . . . . . 10 (𝜑 → ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥) = (((((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))
66653ad2ant1 1102 . . . . . . . . 9 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((((TopOpen‘ℂfld) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥) = (((((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))
6756, 66eleqtrd 2732 . . . . . . . 8 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐹 ↾ (𝐴𝑏)) ∈ (((((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥))
68 resttop 21012 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ Top ∧ 𝐴 ∈ V) → ((TopOpen‘ℂfld) ↾t 𝐴) ∈ Top)
6957, 60, 68syl2anc 694 . . . . . . . . . 10 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝐴) ∈ Top)
70693ad2ant1 1102 . . . . . . . . 9 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((TopOpen‘ℂfld) ↾t 𝐴) ∈ Top)
7133restuni 21014 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ Top ∧ 𝐴 ⊆ ℂ) → 𝐴 = ((TopOpen‘ℂfld) ↾t 𝐴))
7257, 26, 71syl2anc 694 . . . . . . . . . . 11 (𝜑𝐴 = ((TopOpen‘ℂfld) ↾t 𝐴))
7325, 72sseqtrd 3674 . . . . . . . . . 10 (𝜑 → (𝐴𝑏) ⊆ ((TopOpen‘ℂfld) ↾t 𝐴))
74733ad2ant1 1102 . . . . . . . . 9 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐴𝑏) ⊆ ((TopOpen‘ℂfld) ↾t 𝐴))
75 cncfuni.opn . . . . . . . . . . . . 13 ((𝜑𝑏𝐵) → (𝐴𝑏) ∈ ((TopOpen‘ℂfld) ↾t 𝐴))
76753adant3 1101 . . . . . . . . . . . 12 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐴𝑏) ∈ ((TopOpen‘ℂfld) ↾t 𝐴))
77 eqid 2651 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t 𝐴) = ((TopOpen‘ℂfld) ↾t 𝐴)
7877isopn3 20918 . . . . . . . . . . . . 13 ((((TopOpen‘ℂfld) ↾t 𝐴) ∈ Top ∧ (𝐴𝑏) ⊆ ((TopOpen‘ℂfld) ↾t 𝐴)) → ((𝐴𝑏) ∈ ((TopOpen‘ℂfld) ↾t 𝐴) ↔ ((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴𝑏)) = (𝐴𝑏)))
7970, 74, 78syl2anc 694 . . . . . . . . . . . 12 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((𝐴𝑏) ∈ ((TopOpen‘ℂfld) ↾t 𝐴) ↔ ((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴𝑏)) = (𝐴𝑏)))
8076, 79mpbid 222 . . . . . . . . . . 11 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → ((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴𝑏)) = (𝐴𝑏))
8180eqcomd 2657 . . . . . . . . . 10 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐴𝑏) = ((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴𝑏)))
8254, 81eleqtrd 2732 . . . . . . . . 9 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴𝑏)))
8372feq2d 6069 . . . . . . . . . . 11 (𝜑 → (𝐹:𝐴⟶ℂ ↔ 𝐹: ((TopOpen‘ℂfld) ↾t 𝐴)⟶ℂ))
841, 83mpbid 222 . . . . . . . . . 10 (𝜑𝐹: ((TopOpen‘ℂfld) ↾t 𝐴)⟶ℂ)
85843ad2ant1 1102 . . . . . . . . 9 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → 𝐹: ((TopOpen‘ℂfld) ↾t 𝐴)⟶ℂ)
8677, 33cnprest 21141 . . . . . . . . 9 (((((TopOpen‘ℂfld) ↾t 𝐴) ∈ Top ∧ (𝐴𝑏) ⊆ ((TopOpen‘ℂfld) ↾t 𝐴)) ∧ (𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝐴))‘(𝐴𝑏)) ∧ 𝐹: ((TopOpen‘ℂfld) ↾t 𝐴)⟶ℂ)) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥) ↔ (𝐹 ↾ (𝐴𝑏)) ∈ (((((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥)))
8770, 74, 82, 85, 86syl22anc 1367 . . . . . . . 8 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥) ↔ (𝐹 ↾ (𝐴𝑏)) ∈ (((((TopOpen‘ℂfld) ↾t 𝐴) ↾t (𝐴𝑏)) CnP (TopOpen‘ℂfld))‘𝑥)))
8867, 87mpbird 247 . . . . . . 7 ((𝜑𝑏𝐵𝑥 ∈ (𝐴𝑏)) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥))
896, 7, 11, 88syl3anc 1366 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑏𝐵𝑥𝑏) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥))
9089rexlimdv3a 3062 . . . . 5 ((𝜑𝑥𝐴) → (∃𝑏𝐵 𝑥𝑏𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥)))
915, 90mpd 15 . . . 4 ((𝜑𝑥𝐴) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥))
9291ralrimiva 2995 . . 3 (𝜑 → ∀𝑥𝐴 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥))
93 resttopon 21013 . . . . 5 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝐴 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝐴) ∈ (TopOn‘𝐴))
9445, 26, 93syl2anc 694 . . . 4 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝐴) ∈ (TopOn‘𝐴))
95 cncnp 21132 . . . 4 ((((TopOpen‘ℂfld) ↾t 𝐴) ∈ (TopOn‘𝐴) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥𝐴 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥))))
9694, 45, 95syl2anc 694 . . 3 (𝜑 → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥𝐴 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥))))
971, 92, 96mpbir2and 977 . 2 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)))
98 eqid 2651 . . . . 5 ((TopOpen‘ℂfld) ↾t 𝐴) = ((TopOpen‘ℂfld) ↾t 𝐴)
9930, 98, 36cncfcn 22759 . . . 4 ((𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐴cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)))
10026, 29, 99syl2anc 694 . . 3 (𝜑 → (𝐴cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)))
101100eqcomd 2657 . 2 (𝜑 → (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)) = (𝐴cn→ℂ))
10297, 101eleqtrd 2732 1 (𝜑𝐹 ∈ (𝐴cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  wrex 2942  Vcvv 3231  cin 3606  wss 3607   cuni 4468  dom cdm 5143  cres 5145  Rel wrel 5148  wf 5922  cfv 5926  (class class class)co 6690  cc 9972  t crest 16128  TopOpenctopn 16129  fldccnfld 19794  Topctop 20746  TopOnctopon 20763  intcnt 20869   Cn ccn 21076   CnP ccnp 21077  cnccncf 22726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-plusg 16001  df-mulr 16002  df-starv 16003  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-rest 16130  df-topn 16131  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-ntr 20872  df-cn 21079  df-cnp 21080  df-xms 22172  df-ms 22173  df-cncf 22728
This theorem is referenced by:  fouriersw  40766
  Copyright terms: Public domain W3C validator