Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncls Structured version   Visualization version   GIF version

Theorem cncls 21126
 Description: Continuity in terms of closure. (Contributed by Jeff Hankins, 1-Oct-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
cncls ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝑥,𝑋   𝑥,𝑌

Proof of Theorem cncls
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnf2 21101 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋𝑌)
213expia 1286 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋𝑌))
3 elpwi 4201 . . . . . . 7 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
43adantl 481 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑥𝑋)
5 toponuni 20767 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
65ad2antrr 762 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑋 = 𝐽)
74, 6sseqtrd 3674 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑥 𝐽)
8 eqid 2651 . . . . . . 7 𝐽 = 𝐽
98cnclsi 21124 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 𝐽) → (𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)))
109expcom 450 . . . . 5 (𝑥 𝐽 → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥))))
117, 10syl 17 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑋) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥))))
1211ralrimdva 2998 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥))))
132, 12jcad 554 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)))))
14 cnvimass 5520 . . . . . . . . 9 (𝐹𝑦) ⊆ dom 𝐹
15 fdm 6089 . . . . . . . . . 10 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
1615ad2antlr 763 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → dom 𝐹 = 𝑋)
1714, 16syl5sseq 3686 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (𝐹𝑦) ⊆ 𝑋)
18 toponmax 20778 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
1918ad3antrrr 766 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝑋𝐽)
20 elpw2g 4857 . . . . . . . . 9 (𝑋𝐽 → ((𝐹𝑦) ∈ 𝒫 𝑋 ↔ (𝐹𝑦) ⊆ 𝑋))
2119, 20syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((𝐹𝑦) ∈ 𝒫 𝑋 ↔ (𝐹𝑦) ⊆ 𝑋))
2217, 21mpbird 247 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (𝐹𝑦) ∈ 𝒫 𝑋)
23 fveq2 6229 . . . . . . . . . 10 (𝑥 = (𝐹𝑦) → ((cls‘𝐽)‘𝑥) = ((cls‘𝐽)‘(𝐹𝑦)))
2423imaeq2d 5501 . . . . . . . . 9 (𝑥 = (𝐹𝑦) → (𝐹 “ ((cls‘𝐽)‘𝑥)) = (𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))))
25 imaeq2 5497 . . . . . . . . . 10 (𝑥 = (𝐹𝑦) → (𝐹𝑥) = (𝐹 “ (𝐹𝑦)))
2625fveq2d 6233 . . . . . . . . 9 (𝑥 = (𝐹𝑦) → ((cls‘𝐾)‘(𝐹𝑥)) = ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦))))
2724, 26sseq12d 3667 . . . . . . . 8 (𝑥 = (𝐹𝑦) → ((𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)) ↔ (𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦)))))
2827rspcv 3336 . . . . . . 7 ((𝐹𝑦) ∈ 𝒫 𝑋 → (∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)) → (𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦)))))
2922, 28syl 17 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)) → (𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦)))))
30 topontop 20766 . . . . . . . . . 10 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
3130ad3antlr 767 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝐾 ∈ Top)
32 elpwi 4201 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 𝑌𝑦𝑌)
3332adantl 481 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝑦𝑌)
34 toponuni 20767 . . . . . . . . . . 11 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
3534ad3antlr 767 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝑌 = 𝐾)
3633, 35sseqtrd 3674 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝑦 𝐾)
37 ffun 6086 . . . . . . . . . . . 12 (𝐹:𝑋𝑌 → Fun 𝐹)
3837ad2antlr 763 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → Fun 𝐹)
39 funimacnv 6008 . . . . . . . . . . 11 (Fun 𝐹 → (𝐹 “ (𝐹𝑦)) = (𝑦 ∩ ran 𝐹))
4038, 39syl 17 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (𝐹 “ (𝐹𝑦)) = (𝑦 ∩ ran 𝐹))
41 inss1 3866 . . . . . . . . . 10 (𝑦 ∩ ran 𝐹) ⊆ 𝑦
4240, 41syl6eqss 3688 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (𝐹 “ (𝐹𝑦)) ⊆ 𝑦)
43 eqid 2651 . . . . . . . . . 10 𝐾 = 𝐾
4443clsss 20906 . . . . . . . . 9 ((𝐾 ∈ Top ∧ 𝑦 𝐾 ∧ (𝐹 “ (𝐹𝑦)) ⊆ 𝑦) → ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦))) ⊆ ((cls‘𝐾)‘𝑦))
4531, 36, 42, 44syl3anc 1366 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦))) ⊆ ((cls‘𝐾)‘𝑦))
46 sstr2 3643 . . . . . . . 8 ((𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦))) → (((cls‘𝐾)‘(𝐹 “ (𝐹𝑦))) ⊆ ((cls‘𝐾)‘𝑦) → (𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘𝑦)))
4745, 46syl5com 31 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦))) → (𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘𝑦)))
48 topontop 20766 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
4948ad3antrrr 766 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝐽 ∈ Top)
505ad3antrrr 766 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → 𝑋 = 𝐽)
5116, 50eqtrd 2685 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → dom 𝐹 = 𝐽)
5214, 51syl5sseq 3686 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (𝐹𝑦) ⊆ 𝐽)
538clsss3 20911 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝐹𝑦) ⊆ 𝐽) → ((cls‘𝐽)‘(𝐹𝑦)) ⊆ 𝐽)
5449, 52, 53syl2anc 694 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((cls‘𝐽)‘(𝐹𝑦)) ⊆ 𝐽)
5554, 51sseqtr4d 3675 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((cls‘𝐽)‘(𝐹𝑦)) ⊆ dom 𝐹)
56 funimass3 6373 . . . . . . . 8 ((Fun 𝐹 ∧ ((cls‘𝐽)‘(𝐹𝑦)) ⊆ dom 𝐹) → ((𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘𝑦) ↔ ((cls‘𝐽)‘(𝐹𝑦)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑦))))
5738, 55, 56syl2anc 694 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘𝑦) ↔ ((cls‘𝐽)‘(𝐹𝑦)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑦))))
5847, 57sylibd 229 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → ((𝐹 “ ((cls‘𝐽)‘(𝐹𝑦))) ⊆ ((cls‘𝐾)‘(𝐹 “ (𝐹𝑦))) → ((cls‘𝐽)‘(𝐹𝑦)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑦))))
5929, 58syld 47 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ 𝒫 𝑌) → (∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)) → ((cls‘𝐽)‘(𝐹𝑦)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑦))))
6059ralrimdva 2998 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)) → ∀𝑦 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑦)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑦))))
6160imdistanda 729 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥))) → (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑦)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑦)))))
62 cncls2 21125 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑦)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑦)))))
6361, 62sylibrd 249 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥))) → 𝐹 ∈ (𝐽 Cn 𝐾)))
6413, 63impbid 202 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐹 “ ((cls‘𝐽)‘𝑥)) ⊆ ((cls‘𝐾)‘(𝐹𝑥)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030  ∀wral 2941   ∩ cin 3606   ⊆ wss 3607  𝒫 cpw 4191  ∪ cuni 4468  ◡ccnv 5142  dom cdm 5143  ran crn 5144   “ cima 5146  Fun wfun 5920  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  Topctop 20746  TopOnctopon 20763  clsccl 20870   Cn ccn 21076 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-map 7901  df-top 20747  df-topon 20764  df-cld 20871  df-cls 20873  df-cn 21079 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator