MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncls2 Structured version   Visualization version   GIF version

Theorem cncls2 21125
Description: Continuity in terms of closure. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
cncls2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝑥,𝑋   𝑥,𝑌

Proof of Theorem cncls2
StepHypRef Expression
1 cnf2 21101 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋𝑌)
213expia 1286 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋𝑌))
3 elpwi 4201 . . . . . . 7 (𝑥 ∈ 𝒫 𝑌𝑥𝑌)
43adantl 481 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑥𝑌)
5 toponuni 20767 . . . . . . 7 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
65ad2antlr 763 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑌 = 𝐾)
74, 6sseqtrd 3674 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑥 𝐾)
8 eqid 2651 . . . . . . 7 𝐾 = 𝐾
98cncls2i 21122 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 𝐾) → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)))
109expcom 450 . . . . 5 (𝑥 𝐾 → (𝐹 ∈ (𝐽 Cn 𝐾) → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))))
117, 10syl 17 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))))
1211ralrimdva 2998 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))))
132, 12jcad 554 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)))))
148cldss2 20882 . . . . . . . . 9 (Clsd‘𝐾) ⊆ 𝒫 𝐾
155ad2antlr 763 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → 𝑌 = 𝐾)
1615pweqd 4196 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → 𝒫 𝑌 = 𝒫 𝐾)
1714, 16syl5sseqr 3687 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (Clsd‘𝐾) ⊆ 𝒫 𝑌)
1817sseld 3635 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝑥 ∈ (Clsd‘𝐾) → 𝑥 ∈ 𝒫 𝑌))
1918imim1d 82 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥 ∈ 𝒫 𝑌 → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))) → (𝑥 ∈ (Clsd‘𝐾) → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)))))
20 cldcls 20894 . . . . . . . . . . . 12 (𝑥 ∈ (Clsd‘𝐾) → ((cls‘𝐾)‘𝑥) = 𝑥)
2120ad2antll 765 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → ((cls‘𝐾)‘𝑥) = 𝑥)
2221imaeq2d 5501 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → (𝐹 “ ((cls‘𝐾)‘𝑥)) = (𝐹𝑥))
2322sseq2d 3666 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → (((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)) ↔ ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹𝑥)))
24 topontop 20766 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2524ad2antrr 762 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → 𝐽 ∈ Top)
26 cnvimass 5520 . . . . . . . . . . 11 (𝐹𝑥) ⊆ dom 𝐹
27 fdm 6089 . . . . . . . . . . . . 13 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
2827ad2antrl 764 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → dom 𝐹 = 𝑋)
29 toponuni 20767 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
3029ad2antrr 762 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → 𝑋 = 𝐽)
3128, 30eqtrd 2685 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → dom 𝐹 = 𝐽)
3226, 31syl5sseq 3686 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → (𝐹𝑥) ⊆ 𝐽)
33 eqid 2651 . . . . . . . . . . 11 𝐽 = 𝐽
3433iscld4 20917 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝐹𝑥) ⊆ 𝐽) → ((𝐹𝑥) ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹𝑥)))
3525, 32, 34syl2anc 694 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → ((𝐹𝑥) ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹𝑥)))
3623, 35bitr4d 271 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → (((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)) ↔ (𝐹𝑥) ∈ (Clsd‘𝐽)))
3736expr 642 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝑥 ∈ (Clsd‘𝐾) → (((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)) ↔ (𝐹𝑥) ∈ (Clsd‘𝐽))))
3837pm5.74d 262 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥 ∈ (Clsd‘𝐾) → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))) ↔ (𝑥 ∈ (Clsd‘𝐾) → (𝐹𝑥) ∈ (Clsd‘𝐽))))
3919, 38sylibd 229 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥 ∈ 𝒫 𝑌 → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))) → (𝑥 ∈ (Clsd‘𝐾) → (𝐹𝑥) ∈ (Clsd‘𝐽))))
4039ralimdv2 2990 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)) → ∀𝑥 ∈ (Clsd‘𝐾)(𝐹𝑥) ∈ (Clsd‘𝐽)))
4140imdistanda 729 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))) → (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ (Clsd‘𝐾)(𝐹𝑥) ∈ (Clsd‘𝐽))))
42 iscncl 21121 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ (Clsd‘𝐾)(𝐹𝑥) ∈ (Clsd‘𝐽))))
4341, 42sylibrd 249 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))) → 𝐹 ∈ (𝐽 Cn 𝐾)))
4413, 43impbid 202 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  wss 3607  𝒫 cpw 4191   cuni 4468  ccnv 5142  dom cdm 5143  cima 5146  wf 5922  cfv 5926  (class class class)co 6690  Topctop 20746  TopOnctopon 20763  Clsdccld 20868  clsccl 20870   Cn ccn 21076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-map 7901  df-top 20747  df-topon 20764  df-cld 20871  df-cls 20873  df-cn 21079
This theorem is referenced by:  cncls  21126
  Copyright terms: Public domain W3C validator