Proof of Theorem cnclsi
Step | Hyp | Ref
| Expression |
1 | | cntop1 21092 |
. . . . 5
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) |
2 | 1 | adantr 480 |
. . . 4
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → 𝐽 ∈ Top) |
3 | | cnvimass 5520 |
. . . . 5
⊢ (◡𝐹 “ (𝐹 “ 𝑆)) ⊆ dom 𝐹 |
4 | | cnclsi.1 |
. . . . . . . 8
⊢ 𝑋 = ∪
𝐽 |
5 | | eqid 2651 |
. . . . . . . 8
⊢ ∪ 𝐾 =
∪ 𝐾 |
6 | 4, 5 | cnf 21098 |
. . . . . . 7
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶∪ 𝐾) |
7 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶∪ 𝐾) |
8 | | fdm 6089 |
. . . . . 6
⊢ (𝐹:𝑋⟶∪ 𝐾 → dom 𝐹 = 𝑋) |
9 | 7, 8 | syl 17 |
. . . . 5
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → dom 𝐹 = 𝑋) |
10 | 3, 9 | syl5sseq 3686 |
. . . 4
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → (◡𝐹 “ (𝐹 “ 𝑆)) ⊆ 𝑋) |
11 | | simpr 476 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ 𝑋) |
12 | 11, 9 | sseqtr4d 3675 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ dom 𝐹) |
13 | | sseqin2 3850 |
. . . . . 6
⊢ (𝑆 ⊆ dom 𝐹 ↔ (dom 𝐹 ∩ 𝑆) = 𝑆) |
14 | 12, 13 | sylib 208 |
. . . . 5
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → (dom 𝐹 ∩ 𝑆) = 𝑆) |
15 | | dminss 5582 |
. . . . 5
⊢ (dom
𝐹 ∩ 𝑆) ⊆ (◡𝐹 “ (𝐹 “ 𝑆)) |
16 | 14, 15 | syl6eqssr 3689 |
. . . 4
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ (◡𝐹 “ (𝐹 “ 𝑆))) |
17 | 4 | clsss 20906 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ (◡𝐹 “ (𝐹 “ 𝑆)) ⊆ 𝑋 ∧ 𝑆 ⊆ (◡𝐹 “ (𝐹 “ 𝑆))) → ((cls‘𝐽)‘𝑆) ⊆ ((cls‘𝐽)‘(◡𝐹 “ (𝐹 “ 𝑆)))) |
18 | 2, 10, 16, 17 | syl3anc 1366 |
. . 3
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ ((cls‘𝐽)‘(◡𝐹 “ (𝐹 “ 𝑆)))) |
19 | | imassrn 5512 |
. . . . 5
⊢ (𝐹 “ 𝑆) ⊆ ran 𝐹 |
20 | | frn 6091 |
. . . . . 6
⊢ (𝐹:𝑋⟶∪ 𝐾 → ran 𝐹 ⊆ ∪ 𝐾) |
21 | 7, 20 | syl 17 |
. . . . 5
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → ran 𝐹 ⊆ ∪ 𝐾) |
22 | 19, 21 | syl5ss 3647 |
. . . 4
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → (𝐹 “ 𝑆) ⊆ ∪ 𝐾) |
23 | 5 | cncls2i 21122 |
. . . 4
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐹 “ 𝑆) ⊆ ∪ 𝐾) → ((cls‘𝐽)‘(◡𝐹 “ (𝐹 “ 𝑆))) ⊆ (◡𝐹 “ ((cls‘𝐾)‘(𝐹 “ 𝑆)))) |
24 | 22, 23 | syldan 486 |
. . 3
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘(◡𝐹 “ (𝐹 “ 𝑆))) ⊆ (◡𝐹 “ ((cls‘𝐾)‘(𝐹 “ 𝑆)))) |
25 | 18, 24 | sstrd 3646 |
. 2
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ (◡𝐹 “ ((cls‘𝐾)‘(𝐹 “ 𝑆)))) |
26 | | ffun 6086 |
. . . 4
⊢ (𝐹:𝑋⟶∪ 𝐾 → Fun 𝐹) |
27 | 7, 26 | syl 17 |
. . 3
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → Fun 𝐹) |
28 | 4 | clsss3 20911 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
29 | 1, 28 | sylan 487 |
. . . 4
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
30 | 29, 9 | sseqtr4d 3675 |
. . 3
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ dom 𝐹) |
31 | | funimass3 6373 |
. . 3
⊢ ((Fun
𝐹 ∧ ((cls‘𝐽)‘𝑆) ⊆ dom 𝐹) → ((𝐹 “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝑆)) ↔ ((cls‘𝐽)‘𝑆) ⊆ (◡𝐹 “ ((cls‘𝐾)‘(𝐹 “ 𝑆))))) |
32 | 27, 30, 31 | syl2anc 694 |
. 2
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → ((𝐹 “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝑆)) ↔ ((cls‘𝐽)‘𝑆) ⊆ (◡𝐹 “ ((cls‘𝐾)‘(𝐹 “ 𝑆))))) |
33 | 25, 32 | mpbird 247 |
1
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → (𝐹 “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝑆))) |