MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnclsi Structured version   Visualization version   GIF version

Theorem cnclsi 21810
Description: Property of the image of a closure. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
cnclsi.1 𝑋 = 𝐽
Assertion
Ref Expression
cnclsi ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → (𝐹 “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐾)‘(𝐹𝑆)))

Proof of Theorem cnclsi
StepHypRef Expression
1 cntop1 21778 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
21adantr 481 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → 𝐽 ∈ Top)
3 cnvimass 5943 . . . . 5 (𝐹 “ (𝐹𝑆)) ⊆ dom 𝐹
4 cnclsi.1 . . . . . . 7 𝑋 = 𝐽
5 eqid 2821 . . . . . . 7 𝐾 = 𝐾
64, 5cnf 21784 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋 𝐾)
76adantr 481 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → 𝐹:𝑋 𝐾)
83, 7fssdm 6524 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → (𝐹 “ (𝐹𝑆)) ⊆ 𝑋)
9 simpr 485 . . . . . . 7 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → 𝑆𝑋)
107fdmd 6517 . . . . . . 7 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → dom 𝐹 = 𝑋)
119, 10sseqtrrd 4007 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → 𝑆 ⊆ dom 𝐹)
12 sseqin2 4191 . . . . . 6 (𝑆 ⊆ dom 𝐹 ↔ (dom 𝐹𝑆) = 𝑆)
1311, 12sylib 219 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → (dom 𝐹𝑆) = 𝑆)
14 dminss 6004 . . . . 5 (dom 𝐹𝑆) ⊆ (𝐹 “ (𝐹𝑆))
1513, 14eqsstrrdi 4021 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → 𝑆 ⊆ (𝐹 “ (𝐹𝑆)))
164clsss 21592 . . . 4 ((𝐽 ∈ Top ∧ (𝐹 “ (𝐹𝑆)) ⊆ 𝑋𝑆 ⊆ (𝐹 “ (𝐹𝑆))) → ((cls‘𝐽)‘𝑆) ⊆ ((cls‘𝐽)‘(𝐹 “ (𝐹𝑆))))
172, 8, 15, 16syl3anc 1363 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ ((cls‘𝐽)‘(𝐹 “ (𝐹𝑆))))
18 imassrn 5934 . . . . 5 (𝐹𝑆) ⊆ ran 𝐹
197frnd 6515 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → ran 𝐹 𝐾)
2018, 19sstrid 3977 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → (𝐹𝑆) ⊆ 𝐾)
215cncls2i 21808 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐹𝑆) ⊆ 𝐾) → ((cls‘𝐽)‘(𝐹 “ (𝐹𝑆))) ⊆ (𝐹 “ ((cls‘𝐾)‘(𝐹𝑆))))
2220, 21syldan 591 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → ((cls‘𝐽)‘(𝐹 “ (𝐹𝑆))) ⊆ (𝐹 “ ((cls‘𝐾)‘(𝐹𝑆))))
2317, 22sstrd 3976 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ (𝐹 “ ((cls‘𝐾)‘(𝐹𝑆))))
247ffund 6512 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → Fun 𝐹)
254clsss3 21597 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
261, 25sylan 580 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
2726, 10sseqtrrd 4007 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ dom 𝐹)
28 funimass3 6817 . . 3 ((Fun 𝐹 ∧ ((cls‘𝐽)‘𝑆) ⊆ dom 𝐹) → ((𝐹 “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐾)‘(𝐹𝑆)) ↔ ((cls‘𝐽)‘𝑆) ⊆ (𝐹 “ ((cls‘𝐾)‘(𝐹𝑆)))))
2924, 27, 28syl2anc 584 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → ((𝐹 “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐾)‘(𝐹𝑆)) ↔ ((cls‘𝐽)‘𝑆) ⊆ (𝐹 “ ((cls‘𝐾)‘(𝐹𝑆)))))
3023, 29mpbird 258 1 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → (𝐹 “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐾)‘(𝐹𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  cin 3934  wss 3935   cuni 4832  ccnv 5548  dom cdm 5549  ran crn 5550  cima 5552  Fun wfun 6343  wf 6345  cfv 6349  (class class class)co 7145  Topctop 21431  clsccl 21556   Cn ccn 21762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7148  df-oprab 7149  df-mpo 7150  df-map 8398  df-top 21432  df-topon 21449  df-cld 21557  df-cls 21559  df-cn 21765
This theorem is referenced by:  cncls  21812  hmeocls  22306  clsnsg  22647
  Copyright terms: Public domain W3C validator