Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncnp Structured version   Visualization version   GIF version

Theorem cncnp 21207
 Description: A continuous function is continuous at all points. Theorem 7.2(g) of [Munkres] p. 107. (Contributed by NM, 15-May-2007.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cncnp ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝑥,𝑋   𝑥,𝑌

Proof of Theorem cncnp
Dummy variables 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscn 21162 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
21simprbda 654 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋𝑌)
3 eqid 2724 . . . . . . 7 𝐽 = 𝐽
43cncnpi 21205 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 𝐽) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))
54ralrimiva 3068 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑥 𝐽𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))
65adantl 473 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 𝐽𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))
7 toponuni 20842 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
87ad2antrr 764 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝑋 = 𝐽)
98raleqdv 3247 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑥 𝐽𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))
106, 9mpbird 247 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))
112, 10jca 555 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))
12 simprl 811 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝐹:𝑋𝑌)
13 cnvimass 5595 . . . . . . . . . 10 (𝐹𝑦) ⊆ dom 𝐹
14 fdm 6164 . . . . . . . . . . 11 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
1514adantl 473 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) → dom 𝐹 = 𝑋)
1613, 15syl5sseq 3759 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) → (𝐹𝑦) ⊆ 𝑋)
17 ssralv 3772 . . . . . . . . 9 ((𝐹𝑦) ⊆ 𝑋 → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∀𝑥 ∈ (𝐹𝑦)𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))
1816, 17syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∀𝑥 ∈ (𝐹𝑦)𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))
19 simprr 813 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) ∧ (𝑥 ∈ (𝐹𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))
20 simpllr 817 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) ∧ (𝑥 ∈ (𝐹𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝑦𝐾)
21 ffn 6158 . . . . . . . . . . . . . 14 (𝐹:𝑋𝑌𝐹 Fn 𝑋)
2221ad2antlr 765 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) ∧ (𝑥 ∈ (𝐹𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝐹 Fn 𝑋)
23 simprl 811 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) ∧ (𝑥 ∈ (𝐹𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝑥 ∈ (𝐹𝑦))
24 elpreima 6452 . . . . . . . . . . . . . 14 (𝐹 Fn 𝑋 → (𝑥 ∈ (𝐹𝑦) ↔ (𝑥𝑋 ∧ (𝐹𝑥) ∈ 𝑦)))
2524simplbda 655 . . . . . . . . . . . . 13 ((𝐹 Fn 𝑋𝑥 ∈ (𝐹𝑦)) → (𝐹𝑥) ∈ 𝑦)
2622, 23, 25syl2anc 696 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) ∧ (𝑥 ∈ (𝐹𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → (𝐹𝑥) ∈ 𝑦)
27 cnpimaex 21183 . . . . . . . . . . . 12 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ∧ 𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦) → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦))
2819, 20, 26, 27syl3anc 1439 . . . . . . . . . . 11 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) ∧ (𝑥 ∈ (𝐹𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦))
29 simpllr 817 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) ∧ (𝑥 ∈ (𝐹𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢𝐽) → 𝐹:𝑋𝑌)
30 ffun 6161 . . . . . . . . . . . . . . 15 (𝐹:𝑋𝑌 → Fun 𝐹)
3129, 30syl 17 . . . . . . . . . . . . . 14 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) ∧ (𝑥 ∈ (𝐹𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢𝐽) → Fun 𝐹)
32 simp-4l 825 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) ∧ (𝑥 ∈ (𝐹𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝐽 ∈ (TopOn‘𝑋))
33 toponss 20854 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑢𝐽) → 𝑢𝑋)
3432, 33sylan 489 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) ∧ (𝑥 ∈ (𝐹𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢𝐽) → 𝑢𝑋)
3529, 14syl 17 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) ∧ (𝑥 ∈ (𝐹𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢𝐽) → dom 𝐹 = 𝑋)
3634, 35sseqtr4d 3748 . . . . . . . . . . . . . 14 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) ∧ (𝑥 ∈ (𝐹𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢𝐽) → 𝑢 ⊆ dom 𝐹)
37 funimass3 6448 . . . . . . . . . . . . . 14 ((Fun 𝐹𝑢 ⊆ dom 𝐹) → ((𝐹𝑢) ⊆ 𝑦𝑢 ⊆ (𝐹𝑦)))
3831, 36, 37syl2anc 696 . . . . . . . . . . . . 13 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) ∧ (𝑥 ∈ (𝐹𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢𝐽) → ((𝐹𝑢) ⊆ 𝑦𝑢 ⊆ (𝐹𝑦)))
3938anbi2d 742 . . . . . . . . . . . 12 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) ∧ (𝑥 ∈ (𝐹𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢𝐽) → ((𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦) ↔ (𝑥𝑢𝑢 ⊆ (𝐹𝑦))))
4039rexbidva 3151 . . . . . . . . . . 11 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) ∧ (𝑥 ∈ (𝐹𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → (∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦) ↔ ∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ (𝐹𝑦))))
4128, 40mpbid 222 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) ∧ (𝑥 ∈ (𝐹𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → ∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ (𝐹𝑦)))
4241expr 644 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) ∧ 𝑥 ∈ (𝐹𝑦)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ (𝐹𝑦))))
4342ralimdva 3064 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) → (∀𝑥 ∈ (𝐹𝑦)𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∀𝑥 ∈ (𝐹𝑦)∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ (𝐹𝑦))))
4418, 43syld 47 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∀𝑥 ∈ (𝐹𝑦)∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ (𝐹𝑦))))
4544impr 650 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → ∀𝑥 ∈ (𝐹𝑦)∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ (𝐹𝑦)))
4645an32s 881 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑦𝐾) → ∀𝑥 ∈ (𝐹𝑦)∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ (𝐹𝑦)))
47 topontop 20841 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
4847ad3antrrr 768 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑦𝐾) → 𝐽 ∈ Top)
49 eltop2 20902 . . . . . 6 (𝐽 ∈ Top → ((𝐹𝑦) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝐹𝑦)∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ (𝐹𝑦))))
5048, 49syl 17 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑦𝐾) → ((𝐹𝑦) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝐹𝑦)∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ (𝐹𝑦))))
5146, 50mpbird 247 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑦𝐾) → (𝐹𝑦) ∈ 𝐽)
5251ralrimiva 3068 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)
531adantr 472 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
5412, 52, 53mpbir2and 995 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝐹 ∈ (𝐽 Cn 𝐾))
5511, 54impbida 913 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1596   ∈ wcel 2103  ∀wral 3014  ∃wrex 3015   ⊆ wss 3680  ∪ cuni 4544  ◡ccnv 5217  dom cdm 5218   “ cima 5221  Fun wfun 5995   Fn wfn 5996  ⟶wf 5997  ‘cfv 6001  (class class class)co 6765  Topctop 20821  TopOnctopon 20838   Cn ccn 21151   CnP ccnp 21152 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-ral 3019  df-rex 3020  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-id 5128  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-fv 6009  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-1st 7285  df-2nd 7286  df-map 7976  df-topgen 16227  df-top 20822  df-topon 20839  df-cn 21154  df-cnp 21155 This theorem is referenced by:  cncnp2  21208  cnnei  21209  cnconst2  21210  1stccn  21389  ptcn  21553  cnflf  21928  cnfcf  21968  symgtgp  22027  ghmcnp  22040  metcn  22470  txmetcn  22475  cnlimc  23772  dvcn  23804  dvcnvre  23902  psercn  24300  abelth  24315  cxpcn3  24609  cvmlift2lem11  31523  cvmlift2lem12  31524  cvmlift3lem8  31536  ioccncflimc  40518  cncfuni  40519  icccncfext  40520  icocncflimc  40522  cncfiooicclem1  40526  dirkercncflem2  40741  dirkercncflem4  40743  dirkercncf  40744  fourierdlem32  40776  fourierdlem33  40777  fourierdlem62  40805  fourierdlem93  40836  fourierdlem101  40844
 Copyright terms: Public domain W3C validator