MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncombf Structured version   Visualization version   GIF version

Theorem cncombf 24258
Description: The composition of a continuous function with a measurable function is measurable. (More generally, 𝐺 can be a Borel-measurable function, but notably the condition that 𝐺 be only measurable is too weak, the usual counterexample taking 𝐺 to be the Cantor function and 𝐹 the indicator function of the 𝐺-image of a nonmeasurable set, which is a subset of the Cantor set and hence null and measurable.) (Contributed by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
cncombf ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → (𝐺𝐹) ∈ MblFn)

Proof of Theorem cncombf
Dummy variables 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1134 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → 𝐺 ∈ (𝐵cn→ℂ))
2 cncff 23500 . . . . 5 (𝐺 ∈ (𝐵cn→ℂ) → 𝐺:𝐵⟶ℂ)
31, 2syl 17 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → 𝐺:𝐵⟶ℂ)
4 simp2 1133 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → 𝐹:𝐴𝐵)
5 fco 6530 . . . 4 ((𝐺:𝐵⟶ℂ ∧ 𝐹:𝐴𝐵) → (𝐺𝐹):𝐴⟶ℂ)
63, 4, 5syl2anc 586 . . 3 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → (𝐺𝐹):𝐴⟶ℂ)
74fdmd 6522 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → dom 𝐹 = 𝐴)
8 mbfdm 24226 . . . . . 6 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
983ad2ant1 1129 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → dom 𝐹 ∈ dom vol)
107, 9eqeltrrd 2914 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → 𝐴 ∈ dom vol)
11 mblss 24131 . . . 4 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
1210, 11syl 17 . . 3 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → 𝐴 ⊆ ℝ)
13 cnex 10617 . . . 4 ℂ ∈ V
14 reex 10627 . . . 4 ℝ ∈ V
15 elpm2r 8423 . . . 4 (((ℂ ∈ V ∧ ℝ ∈ V) ∧ ((𝐺𝐹):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → (𝐺𝐹) ∈ (ℂ ↑pm ℝ))
1613, 14, 15mpanl12 700 . . 3 (((𝐺𝐹):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐺𝐹) ∈ (ℂ ↑pm ℝ))
176, 12, 16syl2anc 586 . 2 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → (𝐺𝐹) ∈ (ℂ ↑pm ℝ))
18 coeq1 5727 . . . . . . . . 9 (𝑔 = (ℜ ∘ 𝐺) → (𝑔𝐹) = ((ℜ ∘ 𝐺) ∘ 𝐹))
19 coass 6117 . . . . . . . . 9 ((ℜ ∘ 𝐺) ∘ 𝐹) = (ℜ ∘ (𝐺𝐹))
2018, 19syl6eq 2872 . . . . . . . 8 (𝑔 = (ℜ ∘ 𝐺) → (𝑔𝐹) = (ℜ ∘ (𝐺𝐹)))
2120cnveqd 5745 . . . . . . 7 (𝑔 = (ℜ ∘ 𝐺) → (𝑔𝐹) = (ℜ ∘ (𝐺𝐹)))
2221imaeq1d 5927 . . . . . 6 (𝑔 = (ℜ ∘ 𝐺) → ((𝑔𝐹) “ 𝑥) = ((ℜ ∘ (𝐺𝐹)) “ 𝑥))
2322eleq1d 2897 . . . . 5 (𝑔 = (ℜ ∘ 𝐺) → (((𝑔𝐹) “ 𝑥) ∈ dom vol ↔ ((ℜ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol))
24 cnvco 5755 . . . . . . . . . 10 (𝑔𝐹) = (𝐹𝑔)
2524imaeq1i 5925 . . . . . . . . 9 ((𝑔𝐹) “ 𝑥) = ((𝐹𝑔) “ 𝑥)
26 imaco 6103 . . . . . . . . 9 ((𝐹𝑔) “ 𝑥) = (𝐹 “ (𝑔𝑥))
2725, 26eqtri 2844 . . . . . . . 8 ((𝑔𝐹) “ 𝑥) = (𝐹 “ (𝑔𝑥))
28 simplll 773 . . . . . . . . 9 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝐹 ∈ MblFn)
29 simpllr 774 . . . . . . . . 9 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝐹:𝐴𝐵)
30 cncfrss 23498 . . . . . . . . . 10 (𝑔 ∈ (𝐵cn→ℝ) → 𝐵 ⊆ ℂ)
3130adantl 484 . . . . . . . . 9 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝐵 ⊆ ℂ)
32 simpr 487 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝑔 ∈ (𝐵cn→ℝ))
33 ax-resscn 10593 . . . . . . . . . . . 12 ℝ ⊆ ℂ
34 eqid 2821 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
35 eqid 2821 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t 𝐵) = ((TopOpen‘ℂfld) ↾t 𝐵)
3634tgioo2 23410 . . . . . . . . . . . . 13 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
3734, 35, 36cncfcn 23516 . . . . . . . . . . . 12 ((𝐵 ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝐵cn→ℝ) = (((TopOpen‘ℂfld) ↾t 𝐵) Cn (topGen‘ran (,))))
3831, 33, 37sylancl 588 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → (𝐵cn→ℝ) = (((TopOpen‘ℂfld) ↾t 𝐵) Cn (topGen‘ran (,))))
3932, 38eleqtrd 2915 . . . . . . . . . 10 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝑔 ∈ (((TopOpen‘ℂfld) ↾t 𝐵) Cn (topGen‘ran (,))))
40 retopbas 23368 . . . . . . . . . . . 12 ran (,) ∈ TopBases
41 bastg 21573 . . . . . . . . . . . 12 (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,)))
4240, 41ax-mp 5 . . . . . . . . . . 11 ran (,) ⊆ (topGen‘ran (,))
43 simplr 767 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝑥 ∈ ran (,))
4442, 43sseldi 3964 . . . . . . . . . 10 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝑥 ∈ (topGen‘ran (,)))
45 cnima 21872 . . . . . . . . . 10 ((𝑔 ∈ (((TopOpen‘ℂfld) ↾t 𝐵) Cn (topGen‘ran (,))) ∧ 𝑥 ∈ (topGen‘ran (,))) → (𝑔𝑥) ∈ ((TopOpen‘ℂfld) ↾t 𝐵))
4639, 44, 45syl2anc 586 . . . . . . . . 9 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → (𝑔𝑥) ∈ ((TopOpen‘ℂfld) ↾t 𝐵))
4734, 35mbfimaopn2 24257 . . . . . . . . 9 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐵 ⊆ ℂ) ∧ (𝑔𝑥) ∈ ((TopOpen‘ℂfld) ↾t 𝐵)) → (𝐹 “ (𝑔𝑥)) ∈ dom vol)
4828, 29, 31, 46, 47syl31anc 1369 . . . . . . . 8 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → (𝐹 “ (𝑔𝑥)) ∈ dom vol)
4927, 48eqeltrid 2917 . . . . . . 7 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → ((𝑔𝐹) “ 𝑥) ∈ dom vol)
5049ralrimiva 3182 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) → ∀𝑔 ∈ (𝐵cn→ℝ)((𝑔𝐹) “ 𝑥) ∈ dom vol)
51503adantl3 1164 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → ∀𝑔 ∈ (𝐵cn→ℝ)((𝑔𝐹) “ 𝑥) ∈ dom vol)
52 recncf 23509 . . . . . . . 8 ℜ ∈ (ℂ–cn→ℝ)
5352a1i 11 . . . . . . 7 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → ℜ ∈ (ℂ–cn→ℝ))
541, 53cncfco 23514 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → (ℜ ∘ 𝐺) ∈ (𝐵cn→ℝ))
5554adantr 483 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (ℜ ∘ 𝐺) ∈ (𝐵cn→ℝ))
5623, 51, 55rspcdva 3624 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → ((ℜ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol)
57 coeq1 5727 . . . . . . . . 9 (𝑔 = (ℑ ∘ 𝐺) → (𝑔𝐹) = ((ℑ ∘ 𝐺) ∘ 𝐹))
58 coass 6117 . . . . . . . . 9 ((ℑ ∘ 𝐺) ∘ 𝐹) = (ℑ ∘ (𝐺𝐹))
5957, 58syl6eq 2872 . . . . . . . 8 (𝑔 = (ℑ ∘ 𝐺) → (𝑔𝐹) = (ℑ ∘ (𝐺𝐹)))
6059cnveqd 5745 . . . . . . 7 (𝑔 = (ℑ ∘ 𝐺) → (𝑔𝐹) = (ℑ ∘ (𝐺𝐹)))
6160imaeq1d 5927 . . . . . 6 (𝑔 = (ℑ ∘ 𝐺) → ((𝑔𝐹) “ 𝑥) = ((ℑ ∘ (𝐺𝐹)) “ 𝑥))
6261eleq1d 2897 . . . . 5 (𝑔 = (ℑ ∘ 𝐺) → (((𝑔𝐹) “ 𝑥) ∈ dom vol ↔ ((ℑ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol))
63 imcncf 23510 . . . . . . . 8 ℑ ∈ (ℂ–cn→ℝ)
6463a1i 11 . . . . . . 7 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → ℑ ∈ (ℂ–cn→ℝ))
651, 64cncfco 23514 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → (ℑ ∘ 𝐺) ∈ (𝐵cn→ℝ))
6665adantr 483 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (ℑ ∘ 𝐺) ∈ (𝐵cn→ℝ))
6762, 51, 66rspcdva 3624 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → ((ℑ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol)
6856, 67jca 514 . . 3 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (((ℜ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol))
6968ralrimiva 3182 . 2 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → ∀𝑥 ∈ ran (,)(((ℜ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol))
70 ismbf1 24224 . 2 ((𝐺𝐹) ∈ MblFn ↔ ((𝐺𝐹) ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol)))
7117, 69, 70sylanbrc 585 1 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → (𝐺𝐹) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  Vcvv 3494  wss 3935  ccnv 5553  dom cdm 5554  ran crn 5555  cima 5557  ccom 5558  wf 6350  cfv 6354  (class class class)co 7155  pm cpm 8406  cc 10534  cr 10535  (,)cioo 12737  cre 14455  cim 14456  t crest 16693  TopOpenctopn 16694  topGenctg 16710  fldccnfld 20544  TopBasesctb 21552   Cn ccn 21831  cnccncf 23483  volcvol 24063  MblFncmbf 24214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cc 9856  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-disj 5031  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-omul 8106  df-er 8288  df-map 8407  df-pm 8408  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-dju 9329  df-card 9367  df-acn 9370  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ioo 12741  df-ico 12743  df-icc 12744  df-fz 12892  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-rlim 14845  df-sum 15042  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-hom 16588  df-cco 16589  df-rest 16695  df-topn 16696  df-0g 16714  df-gsum 16715  df-topgen 16716  df-pt 16717  df-prds 16720  df-xrs 16774  df-qtop 16779  df-imas 16780  df-xps 16782  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-mulg 18224  df-cntz 18446  df-cmn 18907  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-cnfld 20545  df-top 21501  df-topon 21518  df-topsp 21540  df-bases 21553  df-cn 21834  df-cnp 21835  df-tx 22169  df-hmeo 22362  df-xms 22929  df-ms 22930  df-tms 22931  df-cncf 23485  df-ovol 24064  df-vol 24065  df-mbf 24219
This theorem is referenced by:  iblabslem  24427  iblabs  24428  bddmulibl  24438
  Copyright terms: Public domain W3C validator