MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncombf Structured version   Visualization version   GIF version

Theorem cncombf 23176
Description: The composition of a continuous function with a measurable function is measurable. (More generally, 𝐺 can be a Borel-measurable function, but notably the condition that 𝐺 be only measurable is too weak, the usual counterexample taking 𝐺 to be the Cantor function and 𝐹 the indicator function of the 𝐺-image of a nonmeasurable set, which is a subset of the Cantor set and hence null and measurable.) (Contributed by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
cncombf ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → (𝐺𝐹) ∈ MblFn)

Proof of Theorem cncombf
Dummy variables 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1055 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → 𝐺 ∈ (𝐵cn→ℂ))
2 cncff 22452 . . . . 5 (𝐺 ∈ (𝐵cn→ℂ) → 𝐺:𝐵⟶ℂ)
31, 2syl 17 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → 𝐺:𝐵⟶ℂ)
4 simp2 1054 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → 𝐹:𝐴𝐵)
5 fco 5957 . . . 4 ((𝐺:𝐵⟶ℂ ∧ 𝐹:𝐴𝐵) → (𝐺𝐹):𝐴⟶ℂ)
63, 4, 5syl2anc 690 . . 3 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → (𝐺𝐹):𝐴⟶ℂ)
7 fdm 5950 . . . . . 6 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
84, 7syl 17 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → dom 𝐹 = 𝐴)
9 mbfdm 23146 . . . . . 6 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
1093ad2ant1 1074 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → dom 𝐹 ∈ dom vol)
118, 10eqeltrrd 2688 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → 𝐴 ∈ dom vol)
12 mblss 23051 . . . 4 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
1311, 12syl 17 . . 3 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → 𝐴 ⊆ ℝ)
14 cnex 9874 . . . 4 ℂ ∈ V
15 reex 9884 . . . 4 ℝ ∈ V
16 elpm2r 7739 . . . 4 (((ℂ ∈ V ∧ ℝ ∈ V) ∧ ((𝐺𝐹):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → (𝐺𝐹) ∈ (ℂ ↑pm ℝ))
1714, 15, 16mpanl12 713 . . 3 (((𝐺𝐹):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐺𝐹) ∈ (ℂ ↑pm ℝ))
186, 13, 17syl2anc 690 . 2 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → (𝐺𝐹) ∈ (ℂ ↑pm ℝ))
19 recncf 22461 . . . . . . . 8 ℜ ∈ (ℂ–cn→ℝ)
2019a1i 11 . . . . . . 7 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → ℜ ∈ (ℂ–cn→ℝ))
211, 20cncfco 22466 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → (ℜ ∘ 𝐺) ∈ (𝐵cn→ℝ))
2221adantr 479 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (ℜ ∘ 𝐺) ∈ (𝐵cn→ℝ))
23 cnvco 5218 . . . . . . . . . 10 (𝑔𝐹) = (𝐹𝑔)
2423imaeq1i 5369 . . . . . . . . 9 ((𝑔𝐹) “ 𝑥) = ((𝐹𝑔) “ 𝑥)
25 imaco 5543 . . . . . . . . 9 ((𝐹𝑔) “ 𝑥) = (𝐹 “ (𝑔𝑥))
2624, 25eqtri 2631 . . . . . . . 8 ((𝑔𝐹) “ 𝑥) = (𝐹 “ (𝑔𝑥))
27 simplll 793 . . . . . . . . 9 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝐹 ∈ MblFn)
28 simpllr 794 . . . . . . . . 9 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝐹:𝐴𝐵)
29 cncfrss 22450 . . . . . . . . . 10 (𝑔 ∈ (𝐵cn→ℝ) → 𝐵 ⊆ ℂ)
3029adantl 480 . . . . . . . . 9 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝐵 ⊆ ℂ)
31 simpr 475 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝑔 ∈ (𝐵cn→ℝ))
32 ax-resscn 9850 . . . . . . . . . . . 12 ℝ ⊆ ℂ
33 eqid 2609 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
34 eqid 2609 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t 𝐵) = ((TopOpen‘ℂfld) ↾t 𝐵)
3533tgioo2 22362 . . . . . . . . . . . . 13 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
3633, 34, 35cncfcn 22468 . . . . . . . . . . . 12 ((𝐵 ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝐵cn→ℝ) = (((TopOpen‘ℂfld) ↾t 𝐵) Cn (topGen‘ran (,))))
3730, 32, 36sylancl 692 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → (𝐵cn→ℝ) = (((TopOpen‘ℂfld) ↾t 𝐵) Cn (topGen‘ran (,))))
3831, 37eleqtrd 2689 . . . . . . . . . 10 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝑔 ∈ (((TopOpen‘ℂfld) ↾t 𝐵) Cn (topGen‘ran (,))))
39 retopbas 22322 . . . . . . . . . . . 12 ran (,) ∈ TopBases
40 bastg 20529 . . . . . . . . . . . 12 (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,)))
4139, 40ax-mp 5 . . . . . . . . . . 11 ran (,) ⊆ (topGen‘ran (,))
42 simplr 787 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝑥 ∈ ran (,))
4341, 42sseldi 3565 . . . . . . . . . 10 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝑥 ∈ (topGen‘ran (,)))
44 cnima 20827 . . . . . . . . . 10 ((𝑔 ∈ (((TopOpen‘ℂfld) ↾t 𝐵) Cn (topGen‘ran (,))) ∧ 𝑥 ∈ (topGen‘ran (,))) → (𝑔𝑥) ∈ ((TopOpen‘ℂfld) ↾t 𝐵))
4538, 43, 44syl2anc 690 . . . . . . . . 9 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → (𝑔𝑥) ∈ ((TopOpen‘ℂfld) ↾t 𝐵))
4633, 34mbfimaopn2 23175 . . . . . . . . 9 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐵 ⊆ ℂ) ∧ (𝑔𝑥) ∈ ((TopOpen‘ℂfld) ↾t 𝐵)) → (𝐹 “ (𝑔𝑥)) ∈ dom vol)
4727, 28, 30, 45, 46syl31anc 1320 . . . . . . . 8 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → (𝐹 “ (𝑔𝑥)) ∈ dom vol)
4826, 47syl5eqel 2691 . . . . . . 7 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → ((𝑔𝐹) “ 𝑥) ∈ dom vol)
4948ralrimiva 2948 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) → ∀𝑔 ∈ (𝐵cn→ℝ)((𝑔𝐹) “ 𝑥) ∈ dom vol)
50493adantl3 1211 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → ∀𝑔 ∈ (𝐵cn→ℝ)((𝑔𝐹) “ 𝑥) ∈ dom vol)
51 coeq1 5189 . . . . . . . . . 10 (𝑔 = (ℜ ∘ 𝐺) → (𝑔𝐹) = ((ℜ ∘ 𝐺) ∘ 𝐹))
52 coass 5557 . . . . . . . . . 10 ((ℜ ∘ 𝐺) ∘ 𝐹) = (ℜ ∘ (𝐺𝐹))
5351, 52syl6eq 2659 . . . . . . . . 9 (𝑔 = (ℜ ∘ 𝐺) → (𝑔𝐹) = (ℜ ∘ (𝐺𝐹)))
5453cnveqd 5208 . . . . . . . 8 (𝑔 = (ℜ ∘ 𝐺) → (𝑔𝐹) = (ℜ ∘ (𝐺𝐹)))
5554imaeq1d 5371 . . . . . . 7 (𝑔 = (ℜ ∘ 𝐺) → ((𝑔𝐹) “ 𝑥) = ((ℜ ∘ (𝐺𝐹)) “ 𝑥))
5655eleq1d 2671 . . . . . 6 (𝑔 = (ℜ ∘ 𝐺) → (((𝑔𝐹) “ 𝑥) ∈ dom vol ↔ ((ℜ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol))
5756rspcv 3277 . . . . 5 ((ℜ ∘ 𝐺) ∈ (𝐵cn→ℝ) → (∀𝑔 ∈ (𝐵cn→ℝ)((𝑔𝐹) “ 𝑥) ∈ dom vol → ((ℜ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol))
5822, 50, 57sylc 62 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → ((ℜ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol)
59 imcncf 22462 . . . . . . . 8 ℑ ∈ (ℂ–cn→ℝ)
6059a1i 11 . . . . . . 7 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → ℑ ∈ (ℂ–cn→ℝ))
611, 60cncfco 22466 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → (ℑ ∘ 𝐺) ∈ (𝐵cn→ℝ))
6261adantr 479 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (ℑ ∘ 𝐺) ∈ (𝐵cn→ℝ))
63 coeq1 5189 . . . . . . . . . 10 (𝑔 = (ℑ ∘ 𝐺) → (𝑔𝐹) = ((ℑ ∘ 𝐺) ∘ 𝐹))
64 coass 5557 . . . . . . . . . 10 ((ℑ ∘ 𝐺) ∘ 𝐹) = (ℑ ∘ (𝐺𝐹))
6563, 64syl6eq 2659 . . . . . . . . 9 (𝑔 = (ℑ ∘ 𝐺) → (𝑔𝐹) = (ℑ ∘ (𝐺𝐹)))
6665cnveqd 5208 . . . . . . . 8 (𝑔 = (ℑ ∘ 𝐺) → (𝑔𝐹) = (ℑ ∘ (𝐺𝐹)))
6766imaeq1d 5371 . . . . . . 7 (𝑔 = (ℑ ∘ 𝐺) → ((𝑔𝐹) “ 𝑥) = ((ℑ ∘ (𝐺𝐹)) “ 𝑥))
6867eleq1d 2671 . . . . . 6 (𝑔 = (ℑ ∘ 𝐺) → (((𝑔𝐹) “ 𝑥) ∈ dom vol ↔ ((ℑ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol))
6968rspcv 3277 . . . . 5 ((ℑ ∘ 𝐺) ∈ (𝐵cn→ℝ) → (∀𝑔 ∈ (𝐵cn→ℝ)((𝑔𝐹) “ 𝑥) ∈ dom vol → ((ℑ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol))
7062, 50, 69sylc 62 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → ((ℑ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol)
7158, 70jca 552 . . 3 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (((ℜ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol))
7271ralrimiva 2948 . 2 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → ∀𝑥 ∈ ran (,)(((ℜ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol))
73 ismbf1 23144 . 2 ((𝐺𝐹) ∈ MblFn ↔ ((𝐺𝐹) ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol)))
7418, 72, 73sylanbrc 694 1 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → (𝐺𝐹) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976  wral 2895  Vcvv 3172  wss 3539  ccnv 5027  dom cdm 5028  ran crn 5029  cima 5031  ccom 5032  wf 5786  cfv 5790  (class class class)co 6527  pm cpm 7723  cc 9791  cr 9792  (,)cioo 12005  cre 13634  cim 13635  t crest 15853  TopOpenctopn 15854  topGenctg 15870  fldccnfld 19516  TopBasesctb 20468   Cn ccn 20786  cnccncf 22435  volcvol 22984  MblFncmbf 23134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-inf2 8399  ax-cc 9118  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-pre-sup 9871  ax-addf 9872  ax-mulf 9873
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-disj 4548  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6773  df-om 6936  df-1st 7037  df-2nd 7038  df-supp 7161  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-2o 7426  df-oadd 7429  df-omul 7430  df-er 7607  df-map 7724  df-pm 7725  df-ixp 7773  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-fsupp 8137  df-fi 8178  df-sup 8209  df-inf 8210  df-oi 8276  df-card 8626  df-acn 8629  df-cda 8851  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-4 10931  df-5 10932  df-6 10933  df-7 10934  df-8 10935  df-9 10936  df-n0 11143  df-z 11214  df-dec 11329  df-uz 11523  df-q 11624  df-rp 11668  df-xneg 11781  df-xadd 11782  df-xmul 11783  df-ioo 12009  df-ico 12011  df-icc 12012  df-fz 12156  df-fzo 12293  df-fl 12413  df-seq 12622  df-exp 12681  df-hash 12938  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773  df-clim 14016  df-rlim 14017  df-sum 14214  df-struct 15646  df-ndx 15647  df-slot 15648  df-base 15649  df-sets 15650  df-ress 15651  df-plusg 15730  df-mulr 15731  df-starv 15732  df-sca 15733  df-vsca 15734  df-ip 15735  df-tset 15736  df-ple 15737  df-ds 15740  df-unif 15741  df-hom 15742  df-cco 15743  df-rest 15855  df-topn 15856  df-0g 15874  df-gsum 15875  df-topgen 15876  df-pt 15877  df-prds 15880  df-xrs 15934  df-qtop 15939  df-imas 15940  df-xps 15942  df-mre 16018  df-mrc 16019  df-acs 16021  df-mgm 17014  df-sgrp 17056  df-mnd 17067  df-submnd 17108  df-mulg 17313  df-cntz 17522  df-cmn 17967  df-psmet 19508  df-xmet 19509  df-met 19510  df-bl 19511  df-mopn 19512  df-cnfld 19517  df-top 20469  df-bases 20470  df-topon 20471  df-topsp 20472  df-cn 20789  df-cnp 20790  df-tx 21123  df-hmeo 21316  df-xms 21883  df-ms 21884  df-tms 21885  df-cncf 22437  df-ovol 22985  df-vol 22986  df-mbf 23139
This theorem is referenced by:  iblabslem  23345  iblabs  23346  bddmulibl  23356
  Copyright terms: Public domain W3C validator