MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncongr2 Structured version   Visualization version   GIF version

Theorem cncongr2 15306
Description: The other direction of the bicondition in cncongr 15307. (Contributed by AV, 11-Jul-2021.)
Assertion
Ref Expression
cncongr2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁)))

Proof of Theorem cncongr2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 zcn 11326 . . . . . . . . . 10 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
21mul01d 10179 . . . . . . . . 9 (𝐴 ∈ ℤ → (𝐴 · 0) = 0)
323ad2ant1 1080 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 0) = 0)
4 zcn 11326 . . . . . . . . . 10 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
54mul01d 10179 . . . . . . . . 9 (𝐵 ∈ ℤ → (𝐵 · 0) = 0)
653ad2ant2 1081 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 · 0) = 0)
73, 6eqtr4d 2658 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 0) = (𝐵 · 0))
87adantr 481 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐴 · 0) = (𝐵 · 0))
98oveq1d 6619 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 · 0) mod 𝑁) = ((𝐵 · 0) mod 𝑁))
109adantr 481 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)) → ((𝐴 · 0) mod 𝑁) = ((𝐵 · 0) mod 𝑁))
11 oveq2 6612 . . . . . 6 (𝐶 = 0 → (𝐴 · 𝐶) = (𝐴 · 0))
1211oveq1d 6619 . . . . 5 (𝐶 = 0 → ((𝐴 · 𝐶) mod 𝑁) = ((𝐴 · 0) mod 𝑁))
13 oveq2 6612 . . . . . 6 (𝐶 = 0 → (𝐵 · 𝐶) = (𝐵 · 0))
1413oveq1d 6619 . . . . 5 (𝐶 = 0 → ((𝐵 · 𝐶) mod 𝑁) = ((𝐵 · 0) mod 𝑁))
1512, 14eqeq12d 2636 . . . 4 (𝐶 = 0 → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ ((𝐴 · 0) mod 𝑁) = ((𝐵 · 0) mod 𝑁)))
1610, 15syl5ibr 236 . . 3 (𝐶 = 0 → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁)))
17 oveq2 6612 . . . . . . . . . 10 (𝑀 = (𝑁 / (𝐶 gcd 𝑁)) → (𝐴 mod 𝑀) = (𝐴 mod (𝑁 / (𝐶 gcd 𝑁))))
18 oveq2 6612 . . . . . . . . . 10 (𝑀 = (𝑁 / (𝐶 gcd 𝑁)) → (𝐵 mod 𝑀) = (𝐵 mod (𝑁 / (𝐶 gcd 𝑁))))
1917, 18eqeq12d 2636 . . . . . . . . 9 (𝑀 = (𝑁 / (𝐶 gcd 𝑁)) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod (𝑁 / (𝐶 gcd 𝑁))) = (𝐵 mod (𝑁 / (𝐶 gcd 𝑁)))))
2019adantl 482 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod (𝑁 / (𝐶 gcd 𝑁))) = (𝐵 mod (𝑁 / (𝐶 gcd 𝑁)))))
2120adantl 482 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod (𝑁 / (𝐶 gcd 𝑁))) = (𝐵 mod (𝑁 / (𝐶 gcd 𝑁)))))
22 simpl 473 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁))) → 𝑁 ∈ ℕ)
23 simp3 1061 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℤ)
24 divgcdnnr 15161 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐶 ∈ ℤ) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℕ)
2522, 23, 24syl2anr 495 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℕ)
26 simpl1 1062 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝐴 ∈ ℤ)
27 simpl2 1063 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝐵 ∈ ℤ)
28 moddvds 14915 . . . . . . . 8 (((𝑁 / (𝐶 gcd 𝑁)) ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod (𝑁 / (𝐶 gcd 𝑁))) = (𝐵 mod (𝑁 / (𝐶 gcd 𝑁))) ↔ (𝑁 / (𝐶 gcd 𝑁)) ∥ (𝐴𝐵)))
2925, 26, 27, 28syl3anc 1323 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod (𝑁 / (𝐶 gcd 𝑁))) = (𝐵 mod (𝑁 / (𝐶 gcd 𝑁))) ↔ (𝑁 / (𝐶 gcd 𝑁)) ∥ (𝐴𝐵)))
3025nnzd 11425 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℤ)
31 zsubcl 11363 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
32313adant3 1079 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
3332adantr 481 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐴𝐵) ∈ ℤ)
3430, 33jca 554 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝑁 / (𝐶 gcd 𝑁)) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ))
35 divides 14909 . . . . . . . 8 (((𝑁 / (𝐶 gcd 𝑁)) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) → ((𝑁 / (𝐶 gcd 𝑁)) ∥ (𝐴𝐵) ↔ ∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵)))
3634, 35syl 17 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝑁 / (𝐶 gcd 𝑁)) ∥ (𝐴𝐵) ↔ ∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵)))
3721, 29, 363bitrd 294 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ ∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵)))
38 simpr 477 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
3930adantr 481 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℤ)
4039adantr 481 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℤ)
4138, 40zmulcld 11432 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) ∈ ℤ)
4241zcnd 11427 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) ∈ ℂ)
4331zcnd 11427 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℂ)
44433adant3 1079 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴𝐵) ∈ ℂ)
4544ad3antrrr 765 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (𝐴𝐵) ∈ ℂ)
4623zcnd 11427 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℂ)
4746ad3antrrr 765 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → 𝐶 ∈ ℂ)
48 simpr 477 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) → 𝐶 ≠ 0)
4948adantr 481 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → 𝐶 ≠ 0)
5042, 45, 47, 49mulcan2d 10605 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = ((𝐴𝐵) · 𝐶) ↔ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵)))
51 zcn 11326 . . . . . . . . . . . . . . 15 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
52 subdir 10408 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)))
531, 4, 51, 52syl3an 1365 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)))
5453ad3antrrr 765 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → ((𝐴𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)))
5554eqeq2d 2631 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = ((𝐴𝐵) · 𝐶) ↔ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
5650, 55bitr3d 270 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵) ↔ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
57 nnz 11343 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
5857adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℤ)
59 simpr 477 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
6059zcnd 11427 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ)
6160adantl 482 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℂ)
6246adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → 𝐶 ∈ ℂ)
63 simpl 473 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℕ)
6463nnzd 11425 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℤ)
6523, 64anim12i 589 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ))
66 gcdcl 15152 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐶 gcd 𝑁) ∈ ℕ0)
6765, 66syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 gcd 𝑁) ∈ ℕ0)
6867nn0cnd 11297 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 gcd 𝑁) ∈ ℂ)
69 nnne0 10997 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
7069neneqd 2795 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → ¬ 𝑁 = 0)
7170adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → ¬ 𝑁 = 0)
7271adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ¬ 𝑁 = 0)
7372intnand 961 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ¬ (𝐶 = 0 ∧ 𝑁 = 0))
74 gcdeq0 15162 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐶 gcd 𝑁) = 0 ↔ (𝐶 = 0 ∧ 𝑁 = 0)))
7565, 74syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ((𝐶 gcd 𝑁) = 0 ↔ (𝐶 = 0 ∧ 𝑁 = 0)))
7675necon3abid 2826 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ((𝐶 gcd 𝑁) ≠ 0 ↔ ¬ (𝐶 = 0 ∧ 𝑁 = 0)))
7773, 76mpbird 247 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 gcd 𝑁) ≠ 0)
7861, 62, 68, 77divassd 10780 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ((𝑘 · 𝐶) / (𝐶 gcd 𝑁)) = (𝑘 · (𝐶 / (𝐶 gcd 𝑁))))
7959adantl 482 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℤ)
8057, 69jca 554 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0))
8180adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0))
8223, 81anim12i 589 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)))
83 3anass 1040 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ↔ (𝐶 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)))
8482, 83sylibr 224 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0))
85 divgcdz 15157 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐶 / (𝐶 gcd 𝑁)) ∈ ℤ)
8684, 85syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 / (𝐶 gcd 𝑁)) ∈ ℤ)
8779, 86zmulcld 11432 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝑘 · (𝐶 / (𝐶 gcd 𝑁))) ∈ ℤ)
8878, 87eqeltrd 2698 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ((𝑘 · 𝐶) / (𝐶 gcd 𝑁)) ∈ ℤ)
89 dvdsmul1 14927 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ ((𝑘 · 𝐶) / (𝐶 gcd 𝑁)) ∈ ℤ) → 𝑁 ∥ (𝑁 · ((𝑘 · 𝐶) / (𝐶 gcd 𝑁))))
9058, 88, 89syl2an2 874 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → 𝑁 ∥ (𝑁 · ((𝑘 · 𝐶) / (𝐶 gcd 𝑁))))
9163nncnd 10980 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℂ)
9291adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → 𝑁 ∈ ℂ)
93 divmulasscom 10653 . . . . . . . . . . . . . . . . . . 19 (((𝑘 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ ((𝐶 gcd 𝑁) ∈ ℂ ∧ (𝐶 gcd 𝑁) ≠ 0)) → ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = (𝑁 · ((𝑘 · 𝐶) / (𝐶 gcd 𝑁))))
9461, 92, 62, 68, 77, 93syl32anc 1331 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = (𝑁 · ((𝑘 · 𝐶) / (𝐶 gcd 𝑁))))
9590, 94breqtrrd 4641 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → 𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶))
9695exp32 630 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝑁 ∈ ℕ → (𝑘 ∈ ℤ → 𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶))))
9796adantrd 484 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁))) → (𝑘 ∈ ℤ → 𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶))))
9897imp 445 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝑘 ∈ ℤ → 𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶)))
9998adantr 481 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) → (𝑘 ∈ ℤ → 𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶)))
10099imp 445 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → 𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶))
101 breq2 4617 . . . . . . . . . . . 12 (((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)) → (𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) ↔ 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
102100, 101syl5ibcom 235 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)) → 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
10356, 102sylbid 230 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵) → 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
104103rexlimdva 3024 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) → (∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵) → 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
10522adantl 482 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝑁 ∈ ℕ)
106 zmulcl 11370 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 𝐶) ∈ ℤ)
1071063adant2 1078 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 𝐶) ∈ ℤ)
108107adantr 481 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐴 · 𝐶) ∈ ℤ)
109 zmulcl 11370 . . . . . . . . . . . . 13 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℤ)
1101093adant1 1077 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℤ)
111110adantr 481 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐵 · 𝐶) ∈ ℤ)
112 moddvds 14915 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝐴 · 𝐶) ∈ ℤ ∧ (𝐵 · 𝐶) ∈ ℤ) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
113105, 108, 111, 112syl3anc 1323 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
114113adantr 481 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
115104, 114sylibrd 249 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) → (∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁)))
116115ex 450 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐶 ≠ 0 → (∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁))))
117116com23 86 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵) → (𝐶 ≠ 0 → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁))))
11837, 117sylbid 230 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) → (𝐶 ≠ 0 → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁))))
119118imp 445 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)) → (𝐶 ≠ 0 → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁)))
120119com12 32 . . 3 (𝐶 ≠ 0 → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁)))
12116, 120pm2.61ine 2873 . 2 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁))
122121ex 450 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wrex 2908   class class class wbr 4613  (class class class)co 6604  cc 9878  0cc0 9880   · cmul 9885  cmin 10210   / cdiv 10628  cn 10964  0cn0 11236  cz 11321   mod cmo 12608  cdvds 14907   gcd cgcd 15140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-dvds 14908  df-gcd 15141
This theorem is referenced by:  cncongr  15307
  Copyright terms: Public domain W3C validator