MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncvcOLD Structured version   Visualization version   GIF version

Theorem cncvcOLD 27718
Description: Obsolete version of cncvs 23116 as of 20-Sep-2021. The set of complex numbers is a complex vector space. The vector operation is +, and the scalar product is ·. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
cncvcOLD ⟨ + , · ⟩ ∈ CVecOLD

Proof of Theorem cncvcOLD
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnaddabloOLD 27716 . 2 + ∈ AbelOp
2 ax-addf 10178 . . 3 + :(ℂ × ℂ)⟶ℂ
32fdmi 6201 . 2 dom + = (ℂ × ℂ)
4 ax-mulf 10179 . 2 · :(ℂ × ℂ)⟶ℂ
5 mulid2 10201 . 2 (𝑥 ∈ ℂ → (1 · 𝑥) = 𝑥)
6 adddi 10188 . 2 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
7 adddir 10194 . 2 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
8 mulass 10187 . 2 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))
9 eqid 2748 . 2 ⟨ + , · ⟩ = ⟨ + , · ⟩
101, 3, 4, 5, 6, 7, 8, 9isvciOLD 27715 1 ⟨ + , · ⟩ ∈ CVecOLD
Colors of variables: wff setvar class
Syntax hints:  wcel 2127  cop 4315   × cxp 5252  cc 10097   + caddc 10102   · cmul 10104  CVecOLDcvc 27693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-addf 10178  ax-mulf 10179
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-id 5162  df-po 5175  df-so 5176  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-er 7899  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10239  df-mnf 10240  df-ltxr 10242  df-sub 10431  df-neg 10432  df-grpo 27627  df-ablo 27679  df-vc 27694
This theorem is referenced by:  cnnv  27812
  Copyright terms: Public domain W3C validator