MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextfres1 Structured version   Visualization version   GIF version

Theorem cnextfres1 22071
Description: 𝐹 and its extension by continuity agree on the domain of 𝐹. (Contributed by Thierry Arnoux, 17-Jan-2018.)
Hypotheses
Ref Expression
cnextf.1 𝐶 = 𝐽
cnextf.2 𝐵 = 𝐾
cnextf.3 (𝜑𝐽 ∈ Top)
cnextf.4 (𝜑𝐾 ∈ Haus)
cnextf.5 (𝜑𝐹:𝐴𝐵)
cnextf.a (𝜑𝐴𝐶)
cnextf.6 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶)
cnextf.7 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅)
cnextcn.8 (𝜑𝐾 ∈ Reg)
cnextfres1.1 (𝜑𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾))
Assertion
Ref Expression
cnextfres1 (𝜑 → (((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴) = 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝜑,𝑥

Proof of Theorem cnextfres1
Dummy variables 𝑦 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnextf.1 . . . . 5 𝐶 = 𝐽
2 cnextf.2 . . . . 5 𝐵 = 𝐾
3 cnextf.3 . . . . 5 (𝜑𝐽 ∈ Top)
4 cnextf.4 . . . . 5 (𝜑𝐾 ∈ Haus)
5 cnextf.5 . . . . 5 (𝜑𝐹:𝐴𝐵)
6 cnextf.a . . . . 5 (𝜑𝐴𝐶)
7 cnextf.6 . . . . 5 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶)
8 cnextf.7 . . . . 5 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅)
91, 2, 3, 4, 5, 6, 7, 8cnextf 22069 . . . 4 (𝜑 → ((𝐽CnExt𝐾)‘𝐹):𝐶𝐵)
10 ffn 6204 . . . 4 (((𝐽CnExt𝐾)‘𝐹):𝐶𝐵 → ((𝐽CnExt𝐾)‘𝐹) Fn 𝐶)
119, 10syl 17 . . 3 (𝜑 → ((𝐽CnExt𝐾)‘𝐹) Fn 𝐶)
12 fnssres 6163 . . 3 ((((𝐽CnExt𝐾)‘𝐹) Fn 𝐶𝐴𝐶) → (((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴) Fn 𝐴)
1311, 6, 12syl2anc 696 . 2 (𝜑 → (((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴) Fn 𝐴)
14 ffn 6204 . . 3 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
155, 14syl 17 . 2 (𝜑𝐹 Fn 𝐴)
16 fvres 6366 . . . 4 (𝑦𝐴 → ((((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴)‘𝑦) = (((𝐽CnExt𝐾)‘𝐹)‘𝑦))
1716adantl 473 . . 3 ((𝜑𝑦𝐴) → ((((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴)‘𝑦) = (((𝐽CnExt𝐾)‘𝐹)‘𝑦))
186sselda 3742 . . . 4 ((𝜑𝑦𝐴) → 𝑦𝐶)
191, 2, 3, 4, 5, 6, 7, 8cnextfvval 22068 . . . 4 ((𝜑𝑦𝐶) → (((𝐽CnExt𝐾)‘𝐹)‘𝑦) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹))
2018, 19syldan 488 . . 3 ((𝜑𝑦𝐴) → (((𝐽CnExt𝐾)‘𝐹)‘𝑦) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹))
215ffvelrnda 6520 . . . . . . 7 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ 𝐵)
22 simpr 479 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → 𝑦𝐴)
231restuni 21166 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝐴𝐶) → 𝐴 = (𝐽t 𝐴))
243, 6, 23syl2anc 696 . . . . . . . . . . . . 13 (𝜑𝐴 = (𝐽t 𝐴))
2524adantr 472 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → 𝐴 = (𝐽t 𝐴))
2622, 25eleqtrd 2839 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝑦 (𝐽t 𝐴))
27 cnextfres1.1 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾))
28 fvex 6360 . . . . . . . . . . . . . . . . 17 ((cls‘𝐽)‘𝐴) ∈ V
297, 28syl6eqelr 2846 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ V)
3029, 6ssexd 4955 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ V)
31 resttop 21164 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽t 𝐴) ∈ Top)
323, 30, 31syl2anc 696 . . . . . . . . . . . . . 14 (𝜑 → (𝐽t 𝐴) ∈ Top)
33 haustop 21335 . . . . . . . . . . . . . . 15 (𝐾 ∈ Haus → 𝐾 ∈ Top)
344, 33syl 17 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ Top)
3524feq2d 6190 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹:𝐴𝐵𝐹: (𝐽t 𝐴)⟶𝐵))
365, 35mpbid 222 . . . . . . . . . . . . . 14 (𝜑𝐹: (𝐽t 𝐴)⟶𝐵)
37 eqid 2758 . . . . . . . . . . . . . . 15 (𝐽t 𝐴) = (𝐽t 𝐴)
3837, 2cnnei 21286 . . . . . . . . . . . . . 14 (((𝐽t 𝐴) ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹: (𝐽t 𝐴)⟶𝐵) → (𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ ∀𝑦 (𝐽t 𝐴)∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤))
3932, 34, 36, 38syl3anc 1477 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ ∀𝑦 (𝐽t 𝐴)∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤))
4027, 39mpbid 222 . . . . . . . . . . . 12 (𝜑 → ∀𝑦 (𝐽t 𝐴)∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤)
4140r19.21bi 3068 . . . . . . . . . . 11 ((𝜑𝑦 (𝐽t 𝐴)) → ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤)
4226, 41syldan 488 . . . . . . . . . 10 ((𝜑𝑦𝐴) → ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤)
4342r19.21bi 3068 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})) → ∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤)
443adantr 472 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → 𝐽 ∈ Top)
456adantr 472 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → 𝐴𝐶)
46 snssi 4482 . . . . . . . . . . . . 13 (𝑦𝐴 → {𝑦} ⊆ 𝐴)
4746adantl 473 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → {𝑦} ⊆ 𝐴)
481neitr 21184 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐴𝐶 ∧ {𝑦} ⊆ 𝐴) → ((nei‘(𝐽t 𝐴))‘{𝑦}) = (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))
4944, 45, 47, 48syl3anc 1477 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → ((nei‘(𝐽t 𝐴))‘{𝑦}) = (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))
5049rexeqdv 3282 . . . . . . . . . 10 ((𝜑𝑦𝐴) → (∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤 ↔ ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹𝑣) ⊆ 𝑤))
5150adantr 472 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})) → (∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤 ↔ ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹𝑣) ⊆ 𝑤))
5243, 51mpbid 222 . . . . . . . 8 (((𝜑𝑦𝐴) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})) → ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹𝑣) ⊆ 𝑤)
5352ralrimiva 3102 . . . . . . 7 ((𝜑𝑦𝐴) → ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹𝑣) ⊆ 𝑤)
544adantr 472 . . . . . . . . 9 ((𝜑𝑦𝐴) → 𝐾 ∈ Haus)
552toptopon 20922 . . . . . . . . . 10 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝐵))
5655biimpi 206 . . . . . . . . 9 (𝐾 ∈ Top → 𝐾 ∈ (TopOn‘𝐵))
5754, 33, 563syl 18 . . . . . . . 8 ((𝜑𝑦𝐴) → 𝐾 ∈ (TopOn‘𝐵))
587adantr 472 . . . . . . . . . 10 ((𝜑𝑦𝐴) → ((cls‘𝐽)‘𝐴) = 𝐶)
5918, 58eleqtrrd 2840 . . . . . . . . 9 ((𝜑𝑦𝐴) → 𝑦 ∈ ((cls‘𝐽)‘𝐴))
601toptopon 20922 . . . . . . . . . . . 12 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝐶))
613, 60sylib 208 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝐶))
6261adantr 472 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝐽 ∈ (TopOn‘𝐶))
63 trnei 21895 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶𝑦𝐶) → (𝑦 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴)))
6462, 45, 18, 63syl3anc 1477 . . . . . . . . 9 ((𝜑𝑦𝐴) → (𝑦 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴)))
6559, 64mpbid 222 . . . . . . . 8 ((𝜑𝑦𝐴) → (((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴))
665adantr 472 . . . . . . . 8 ((𝜑𝑦𝐴) → 𝐹:𝐴𝐵)
67 flfnei 21994 . . . . . . . 8 ((𝐾 ∈ (TopOn‘𝐵) ∧ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝐵) → ((𝐹𝑦) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ↔ ((𝐹𝑦) ∈ 𝐵 ∧ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹𝑣) ⊆ 𝑤)))
6857, 65, 66, 67syl3anc 1477 . . . . . . 7 ((𝜑𝑦𝐴) → ((𝐹𝑦) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ↔ ((𝐹𝑦) ∈ 𝐵 ∧ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹𝑣) ⊆ 𝑤)))
6921, 53, 68mpbir2and 995 . . . . . 6 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹))
70 eleq1w 2820 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝐶𝑦𝐶))
7170anbi2d 742 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝜑𝑥𝐶) ↔ (𝜑𝑦𝐶)))
72 sneq 4329 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → {𝑥} = {𝑦})
7372fveq2d 6354 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((nei‘𝐽)‘{𝑥}) = ((nei‘𝐽)‘{𝑦}))
7473oveq1d 6826 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) = (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))
7574oveq2d 6827 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) = (𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)))
7675fveq1d 6352 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹))
7776neeq1d 2989 . . . . . . . . . 10 (𝑥 = 𝑦 → (((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅ ↔ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅))
7871, 77imbi12d 333 . . . . . . . . 9 (𝑥 = 𝑦 → (((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅) ↔ ((𝜑𝑦𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅)))
7978, 8chvarv 2406 . . . . . . . 8 ((𝜑𝑦𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅)
8018, 79syldan 488 . . . . . . 7 ((𝜑𝑦𝐴) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅)
812hausflf2 22001 . . . . . . 7 (((𝐾 ∈ Haus ∧ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝐵) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≈ 1𝑜)
8254, 65, 66, 80, 81syl31anc 1480 . . . . . 6 ((𝜑𝑦𝐴) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≈ 1𝑜)
83 en1eqsn 8353 . . . . . 6 (((𝐹𝑦) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≈ 1𝑜) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) = {(𝐹𝑦)})
8469, 82, 83syl2anc 696 . . . . 5 ((𝜑𝑦𝐴) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) = {(𝐹𝑦)})
8584unieqd 4596 . . . 4 ((𝜑𝑦𝐴) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) = {(𝐹𝑦)})
86 fvex 6360 . . . . 5 (𝐹𝑦) ∈ V
8786unisn 4601 . . . 4 {(𝐹𝑦)} = (𝐹𝑦)
8885, 87syl6eq 2808 . . 3 ((𝜑𝑦𝐴) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) = (𝐹𝑦))
8917, 20, 883eqtrd 2796 . 2 ((𝜑𝑦𝐴) → ((((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴)‘𝑦) = (𝐹𝑦))
9013, 15, 89eqfnfvd 6475 1 (𝜑 → (((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1630  wcel 2137  wne 2930  wral 3048  wrex 3049  Vcvv 3338  wss 3713  c0 4056  {csn 4319   cuni 4586   class class class wbr 4802  cres 5266  cima 5267   Fn wfn 6042  wf 6043  cfv 6047  (class class class)co 6811  1𝑜c1o 7720  cen 8116  t crest 16281  Topctop 20898  TopOnctopon 20915  clsccl 21022  neicnei 21101   Cn ccn 21228  Hauscha 21312  Regcreg 21313  Filcfil 21848   fLimf cflf 21938  CnExtccnext 22062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-int 4626  df-iun 4672  df-iin 4673  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-om 7229  df-1st 7331  df-2nd 7332  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-1o 7727  df-oadd 7731  df-er 7909  df-map 8023  df-pm 8024  df-en 8120  df-dom 8121  df-sdom 8122  df-fin 8123  df-fi 8480  df-rest 16283  df-topgen 16304  df-fbas 19943  df-fg 19944  df-top 20899  df-topon 20916  df-bases 20950  df-cld 21023  df-ntr 21024  df-cls 21025  df-nei 21102  df-cn 21231  df-cnp 21232  df-haus 21319  df-fil 21849  df-fm 21941  df-flim 21942  df-flf 21943  df-cnext 22063
This theorem is referenced by:  rrhre  30372
  Copyright terms: Public domain W3C validator